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Kuchling, Friston, Georgiev and Levin ([1]; hereafter KFGL) show how to construct, start-
ing from generic classical physical assumptions, a model of a cell, or of any biological system,
as an inferential agent that acts to minimize Bayesian surprise. Key to this construction
is the concept of a Markov blanket, defined in KFGL, §2.2.3 as the Cartesian product of
the sets of “sensory” and “active” states of the cell / system. The existence of the Markov
blanket assures the conditional independence of “external” and “internal” states that is
required if the probabilities of external and internal states used in Bayes’ theorem are to
be well-defined. As KFGL note, “Most fundamentally, we have assumed the existence of a
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Markov blanket, which separates external and internal states through a set of active and
sensory states ... it needs to be verified empirically that signal transmission and adaptive
responses on a cellular level are not instantaneous (as in our adiabatic approximations),
and that active states indeed cause changes in sensory states” (p. 18).

Here we show that when KFGL’s classical physical assumptions are replaced by generic
quantum-theoretic assumptions, including consistency with Special Relativity, both the ex-
istence of Markov blankets and the non-instantaneous nature of responses naturally result.
These results hold for any physical system embedded in and interacting with an environ-
ment, provided only that information is conserved. Hence KFGL’s construction of Bayesian
inference applies, in principle, to any physical system. We argue that this is not surprising,
but rather is to be expected on the basis of principles as diverse as the Holographic principle
2], Deutsch’s “physical” statement of the Church-Turing thesis [3], and the commonplace
assumption that any physical system can be considered an observer (e.g. [4]).

Consider any closed physical system X with an associated complex Hilbert state space Hx,
and consider an arbitrary decomposition X = AB with associated state space decomposi-
tion Hy = Ha ® Hp. Let Hx be the Hamiltonian self-interaction of X; hence the time
propagator Px(t) = exp((—i/h)Hxt). We assume that Hx is local. With the decomposi-
tion X = AB, we have Hxy = Hy+ Hg+ Hap, where H 45 represents the A — B interaction
and all interactions are local. Here A and B are open systems; B can be considered the
“environment” of A and vice-versa.

There is a natural sense in which the states and dynamics of A and B are “hidden” from each
other in any such decomposition. The tensor product ® is associative and the Hamiltonian
H is additive, so we can choose an arbitrary decomposition B = C'D and write Hg =
He ® Hp and the interaction Hg = He + Hp + Hep without affecting the values of
Hy, Hy, or Hyp in any way. Hence the A — B interaction is fully independent of the
internal structure of B and of any interactions between internal components of B; similarly
it is fully independent of any internal structure or interactions of A. We can formulate this
independence in informational terms by saying: the interaction Hap carries no information
about the internal structures or dynamics of either A or B across the A — B boundary. The
conditional independence of A and B provided by a Markov blanket thus follows, in the
current framework, from the locality of Hx and the decompositional structure of the state
space.

What, then, does the interaction H4p carry information about? The only remaining pos-
sibility is that H4p carries information about itself, i.e. about the relationship between A
and B. This is what a Markov blanket does. Hence we appear to have the function of a
Markov blanket “for free” when we make only generic quantum-theoretic assumptions.

To make this precise, we have to say what “information” means. The formal description
given so far is entirely quantum-kinematical; no classical states or dynamics have yet been
characterized. The idea of a signal or interaction “carrying information” is, however, a
classical idea: it refers to the transfer of classical information. This is, moreover, the sense
of information relevant to KFLG’s construction of Bayesian inference. Where does this
classical information come from?



The question of the origin of classical information is one version of the notorious “measure-
ment problem” in quantum theory [4, 5]. Here we will sidestep all philosophical discussions
of interpretation, and ask merely what classical information is available to be characterized.
The answer to this more practical question is clear and uncontroversial: the available clas-
sical information is the set of real eigenvalues of H,p. These eigenvalues, when considered
together, fully specify Hap; hence they provide all the information about the relationship
between A and B that there is to be had. We can consider this information to flow from
B to A, choose an orthonormal basis, and write H4p as:

Hap = BYkgT" > af M7, (1)

where the M/ are orthogonal Hermitian operators with binary eigenvalues, the af' € [0, 1]
are such that 3, a! = 1, kp is Boltzmann’s constant, T4 is A’s temperature, and 54 > 1
is a measure of A’s thermodynamic efficiency that depends on the “hidden” dynamics
H,. Here we make the now-standard assumption of a finite, discrete interaction, which is
justified below. The M are traditionally called “measurement” operators, and correspond
to binary-valued “questions to Nature” [6] posed by A to its environment B. The idea
of “answering” a question is classical, and implies an irreversible state change [7]: each
question from A that B “answers” transfers one bit from B to A and is paid for by the
transfer of B4kgT* from A to B. The action to transfer N4 bits from B to A in time At
is:

/A dtPx(t) = NAGAkRTAAL 2)

in units of &, confirming that heat is dissipated by A, i.e. transferred from A to B by Hp.
Clearly the same expressions can be employed to represent information transfer from A to
B by replacing “A” by “B” as a superscript and summing over an index j. Within the
interval At, therefore,

NA/@ATA — NBBBTB, (3)

so the recorded information asymmetry is proportional to the thermal asymmetry:

NA/NB — 6BTB/5ATA. (4)

Setting 74 = T'B for simplicity, the asymmetry in recorded classical information, i.e. mem-
ory for what is observed depends on the thermodynamic efficiencies and hence the internal
dynamics H4 and Hp.

The classical idea of “dissipation” is, at time scales larger that At, observer-dependent
[8]; A and B each “see” the other’s thermodynamic entropy increase as the other “loses”
information in compliance with the Second Law. However, the von Neumann entropy of the



combined system X remains constant at zero as required by the conservation of information.
As X is closed, this latter statement is merely definitional; the total von Neumann entropy
cannot be observed.

The A — B interaction defined by (1) can be realized in a simple physical model. Letting N
be the number of operators M (or M JB ) and hence the maximal number of bits transferrable
by Hap, consider a lattice of N causally-independent qubits, and let the M and M jB be
z-spin operators that each act, in alternation, on one of these qubits. The observed states
of B for A are ¥2(t) = ®|i) and of A for B are ¢ (t + 0t) = ®|j), where the time ¢ is
discrete and 6t is the delay between A’s and B’s observations. The extents to which A and
B can record observations of these states depend on 44 and 3% respectively. We can regard
this qubit lattice as the data register of a quantum computer controlled by the propagator
Px(t); this representation is universal for finite-dimensional systems [3, 9]. The lattice
states provide, in this representation, a natural “encoding” of the eigenvalues of H4p.

Nothing has been said, thus far, about geometry. Any physical interaction can, however, be
regarded as ocurring on a holographic screen, with an area of at least 4/%, with [p the Planck
length, associated with each encoded bit [2, 10]. For instance, within the semi-classical
limit of the Euclidean picture of space-time [11], we might argue that S* x §? topological
configurations capture information at mesoscopic scales larger than [p and thus realize
holographic encoding. In any such model, the assumption of finite, discrete eigenvalues for
H 4p corresponds to the assumption of a finite screen, i.e. a finite spatial boundary between
A and B. As H,p and hence Hx do not depend on the spatial variables on the screen,
they are ancillary, and can be considered to define the boundary of B from A’s perspective
or vice-versa.

We now have all the ingredients of a classical Markov blanket: a spatial boundary with
a defined, discrete bidirectional information flow that assures conditional independence of
the systems it separates. Information is “displayed” on this boundary for both A and B
to “see,” but their ability to record this information for future use is detemined by their
mutually-unobservable internal dynamics. The information that each system records, at
each time step, is its current representation of the state of the other system; no other state
information is available.

The variational free energy of B is minimized for A, in this model, when the internal
dynamics H, is a good predictor of the observable effects of Hg. In this case A is a
“model” of B in the sense of the Good Regulator Theorem [12].
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