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Abstract: We show that sharing a quantum reference frame requires sharing measurement operators
that identify the reference frame in addition to operators that measure its state. Observers restricted
to finite resources cannot, in general, operationally determine that they share such operators.
Uncertainty about whether system-identification operators are shared induces decoherence.
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1. Introduction

Bartlett, Rudolph and Spekkens [1] define nonfungible quantum information as information
that Alice and Bob can share only by exchanging a quantum (i.e., physical) system. This is in
contradistinction to fungible information that Alice can communicate to Bob by sending a string
of classical bits, e.g., a bit string that describes a system or encodes a measurement outcome.
Quantum systems implementing reference frames (quantum reference frames or QRFs [2]), e.g.,
physically-implemented length and angle standards, clocks, gyroscopes, and standardized charges,
are canonical examples of physically-encoded nonfungible information. Angelo et al. have shown [3]
that such systems must be described with care to prevent unnoticed classical assumptions, particularly
assumptions of separability, from introducing paradoxes even when only a single experiment, observer,
and QRF are considered.

In practice, we are concerned not only with the formal description of a QRF, but also with the use of
a QRF by an observer to make a measurement. Much of [1] and of the broader literature is dedicated to
developing methods for sharing fungible information even in the absence of shared QRFs, i.e., methods
that assume each observer employs only local QRFs that are available a priori. The physical operations
required to share a QRF remain largely neglected, and have yet to be rigorously characterized.

To serve as a QRF, a physical system must have a designated pointer state that conveys classical
reference information, e.g., spatial orientation if the QRF is a Cartesian frame; we consider the “state”
of the QRF to be this designated pointer state. Alice and Bob can exchange a QRF only if Bob can
unambiguously identify the physical system received from Alice and measure the same (pointer)
state of that system that Alice has previously measured or prepared. Here we consider the process
of sharing a QRF in an operational setting, considering in particular the operations by both parties that
are required to both identify the QRF as a system and determine its state, e.g., its spatial orientation
if it is a Cartesian frame. Employing the methods and the results of [4], we characterize the process
of identifying a QRF explicitly in terms of the measurement operators, i.e., observables employed to
distinguish the QRF from its surrounding environment, including the other systems present in the
laboratory. We then show that the physical implementations of these observables encode nonfungible
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information. Pointer state outcomes specifying the relative states of QRFs, which as shown in [1] can
be inferred without physically sharing the QRFs, are defined only with respect to such nonfungible,
measurement-operator encoded information. Hence the nonfungible information encoded by the
physical implementations of QRF-identifying observables must already be shared either to exchange
a QRF or to infer the relative states of non-shared QRFs.

Whether Alice and Bob implement the same observables cannot be determined operationally
with finite resources, either by Alice and Bob or by a third party. Hence Alice and Bob must respect
a superselection rule or, equivalently, experience decoherence [1] (see [3] for an explicit analysis of such
decoherence even in a setting involving only three particles). We suggest that the shared “classical
reality” of the laboratory emphasized by Bohr [5] can be attributed to this unavoidable uncertainty
about shared observables.

2. System Identification Formalism

We consider the situation shown in Figure 1: Alice makes measurements at her location, then
sends Bob both her measurement outcomes (as fungible information) and (a token of) her Cartesian
frame, which Bob employs, together with his local Cartesian frame, to make measurements at his
distant location. Avoiding no-cloning restrictions requires that if this token is in a pure state, that state
is distinct from the state of Alice’s local Cartesian frame; we assume for simplicity that the shared token
is in a mixed state, and justify this assumption below. We also assume explicitly that the process of
transferring the token to Bob does not change its state, then show in Section 5 below how uncertainty
about the state can nonetheless be introduced by the sharing protocol. We ask how both Alice and Bob
identify the transferred QRF as a physical system, i.e., distinguish it from the surrounding environment,
including whatever else is contained within their respective laboratories, and how they then determine
the pointer state of the shared reference frame, e.g., its orientations with respect to their respective local
Cartesian frames. Alice and Bob can share nonfungible reference-frame information by exchanging
a QRF token only if they both identify the same physical system as the shared token; if Bob receives,
identifies, and measures the state of a different system from the one Alice identified, measured or
prepared, and sent, the intended nonfungible information clearly has not been successfully shared.

Figure 1. Alice sends distant Bob a fungible encoding of her observational outcomes and a nonfungible
token (dashed lines) of her local Cartesian frame. Both Alice and Bob must identify the same token for
the sharing protocol to be successfully executed.

Letting k = A or B and following the methods of [4], we first consider partitions of “everything”
U into an observer k and that observer’s “world” Wk, i.e., everything with which that observer can
interact. For a non-relativistic system, we can write U = AWA = BWB and we can consider Hilbert
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spaces HU = Hk ⊗HWk and interaction Hamiltonians HU = Hk + HWk + HkWk
; relativity requires

identifying Wk with the union of k’s past and future lightcones, but does not change what follows.
Consider each observer to interact with its respective world by deploying Hermitian operators Mk

i ,
choosing bases in which these operators have binary eigenvalues and hence correspond to “questions
to Nature” with yes–no answers [6]. We assume the observers have only finite resources and hence
finite numbers of such operators; for simplicity, we assume a common total number of operators
N. In all realistic situations, observers have limited knowledge of and operational control over the
worlds with which they interact, i.e., N � dim(Wk) for any observer k. In this case, we can write,
for each observer:

HkWk
= βkkBTk ∑

i
αk

i Mk
i , (1)

where the αk
i ∈ [0, 1] are such that ∑i αk

i = 1, kB is Boltzmann’s constant, Tk is k’s temperature, and
βk ≥ ln 2 is a measure of k’s thermodynamic efficiency that depends on the internal dynamics Hk.
The idea that Nature “answers” an observer’s questions is classical, and implies an irreversible state
change [7]: Each question from k that Wk “answers” transfers one bit from Wk to k and is paid for by
the transfer of βkkBTk from k to Wk. The action to transfer N bits in time ∆t is:∫

∆t
dt(ıh̄)lnPk(t) = NβkkBTk∆t (2)

where Pk = exp−(ı/h̄)HkWk
t.

We can now ask how each observer allocates their limited observational resources to the tasks
of identifying and characterizing the pointer states of the various “systems” embedded in their
respective worlds. Consistent with the arbitrary tensor-product decomposability of Wk, we make
no assumption that such systems are “ontic” but rather consider them to be defined by k’s activity
of measurement [4,8]. Let Xk be the Cartesian QRF to be shared as identified by k and Yk be k’s local
Cartesian frame. We can write k’s system-identification observables as MXk

j and MYk
j , suppressing

redundant subscripts k and again assuming equal total numbers M, 2M < N of Xk- and Yk-identifying
operators for simplicity. Similarly, k’s pointer observables for determining the state, e.g., orientation,
of Xk and Yk are MPk

l and MQk
l , with a common number of operators M′ < M for each pointer state.

We explicitly assume that the MPk
l and MQk

l act on whatever system is identified by the MXk
j and

MYk
j , respectively.

To identify the shared QRF and determine its state with respect to their own local Cartesian
frame, both Alice and Bob must execute the cycle of measurements shown in Figure 2. Alice first
identifies her local frame and measures its state, then identifies the token QRF to be transferred and
either measures its state as, or prepares its state to be, indistinguishable within her measurement
resolution from that of her local frame. As Alice’s measurement resolution is finite, this state will in
general be mixed. Bob receives and identifies a token, which for successful communication must be
the same one transferred, measures its state, and then identifies and measures the state of his local
frame to make the comparison. At each step in the cycle, all degrees of freedom not being measured
in that step are part of the “environment” for the measurements being made [9]. This redefinition
of the environment between measurements implements decoherence [10], a point we will return to in
Section 5 below.

If it is assumed a priori that Alice and Bob share both system-identification and pointer-state
operators, i.e., if {MXA

j } = {MXB
j } and {MPA

l } = {MPB
l }, then XA = XB and, assuming as above that

transmission of the QRF does not change its pointer state, |XA〉 = |XB〉. Hence if it is assumed a priori
that Alice and Bob share both system-identification and pointer-state operators, they can exchange
nonfungible information by exchanging the QRF X. From an operational perspective, however, this
cannot be assumed. The question of interest in this case is whether Alice and Bob can determine,
by finite observations, that they have successfully exchanged X, i.e., that XA = XB. In particular, can
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Bob determine by finite observations that the physical system XB identified by his operators MXB
j

is the same physical system XA that Alice identified using her operators MXA
j ? Without additional

information from Alice, clearly the answer is no. Alice sending additional nonfungible information
in the form of additional physical systems that require identification by Bob, moreover, merely leads
to infinite regress. Hence the operational question is: Can Bob determine by finite observations that
XA = XB given additional fungible information from Alice. We show below that the answer is no.

Figure 2. Alice and Bob each cycle through identifying ({MXk
j } and {MYk

j }) and then determining the

pointer state of ({MPk
l } and {MQk

l }) their shared (Xk) and local (Yk) Cartesian frames.

3. Fungible Information Is Insufficient for System Identification

Bob’s problem is to determine, given his identified system XB and a fungible description of Alice’s
identified system XA, whether XA = XB. By “fungible” here and below we also understand “obtained
by finite observations.” The following shows that this problem cannot be solved.

Theorem 1. Given a system XB, no fungible description of a system XA previously observed at some distant
location is sufficient to determine whether XA = XB.

To prove this, we focus on how the fungible description is constructed by the distant observer
A. The description of XA can be sufficient to determine whether XA = XB only if, for any degree of
freedom φ in WA, it specifies whether φ is a degree of freedom of XA. To achieve this, A’s operators
MXA

j must be sufficient to determine whether any given φ is a degree of freedom of XA. Let XA be

such that XAXA = WA. Abusing the notation slightly, we can write their action as MXA
j : XA → 1 for

all j and MXA
j : XA → 0 for some j (all j if the MXA

j are a minimal nonredundant set). Being able to

identify XA at multiple times requires that the MXA
j satisfy the predictability sieve condition [11]:

[MXA
j , HWA ] = 0 ∀j. (3)

The system XA must, in other words, be separable from XA both before and after A’s measurement,
and the measurement must not disturb WA by more than the measurement resolution. Equivalently,
A has an operator MX such that MX : XA → 1 and MX : XA → 0 that satisfies [MXA

j , MX ] = 0 ∀j.

Determining whether any given φ is a degree of freedom of XA is then determining whether MX(φ) = 0
or 1.

Lemma 1. An observer A cannot determine, by finite observation, whether any arbitrary degree of freedom φ is
a degree of freedom of a specified system XA.

Proof of Lemma 1. We take the proof from that of [4] Theorem 1. To determine whether any arbitrary
degree of freedom φ is a degree of freedom of the specified system XA, A must, in the limit, examine
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every potential φ, i.e., every degree of freedom of WA. This requires progressively refining the
observation of WA by employing additional measurement operators, with the number of operators
N → dim(WA) in the limit. In this limit, Equation (2) becomes:∫

∆t
dt(ıh̄)lnPk(t)→ dim(WA)βkkBTk∆t. (4)

Now consider two measurements made at t and at t + ∆t, after the heat given by Equation (4)
from the measurements initiated at t has been dumped into WA. However this heat is distributed
in WA, the predictability sieve condition (3) will be violated for at least one of the operators MXA

j at
t + ∆t. It is, however, Equation (3) that assures that XA is in a separable state and hence allows A to
identify XA. If Equation (3) and hence separability fail, A’s attempt to re-identify XA at t + ∆t will fail
as well. In this case, A cannot determine whether φ is a degree of freedom of XA.

Lemma 1 shows that A cannot determine, by finite observation, the value that the physically
implemented operator MX assigns to any arbitrary φ. Equivalently, A cannot determine by finite
observation that the operators MXA

j satisfy Equation (3), as doing so requires full operational control

over HWA . Hence A cannot determine by finite observation that the MXA
j pick out the same system

XA at successive times, as indeed follows from even a classical analysis of system identification under
finite-resource constraints ([12] Theorem 2; see [4] for discussion).

Given Lemma 1, proving Theorem 1 is trivial:

Proof of Theorem 1. By Lemma 1, no fungible description of XA is sufficient to specify the degrees of
freedom of XA. Hence no such description is sufficient to determine that XA = XB, for any XB.

Lemma 1 clearly applies to Bob as well as to Alice; Bob is equally unable to determine, by finite
observation, the degrees of freedom of the system XB that he has received. Hence even given an a priori
stipulation, instead of a description from observation, of the degrees of freedom of XA, Bob cannot
determine that XA = XB. This situation is clearly no different if Alice and Bob both receive tokens,
with or without accompanying descriptions, from some third party. Unless it is assumed a priori that
Alice and Bob share both system-identification and pointer-state operators, they face unresolvable
uncertainty about whether they are in fact identifying the same physical system X or measuring the
same pointer state |X〉, i.e., they face unresolvable uncertainty about whether they in fact share a QRF.
In the language of [1], this is “passive” uncertainty. It cannot, however, be distinguished operationally
from “active” uncertainty about whether the unobserved (or discontinuously observed) process of
transferring a single, well-defined token X from Alice to Bob changed its state.

Example 1. System identification is typically treated as unproblematic in discussions of QRF sharing (e.g., [1]).
Consider, however, an adversarial situation in which a malicious third party intercepts the transferred QRF and
substitutes a distinct physical system X′ for XA. How much fungible information must Alice provide to assure
that Bob can detect the substitution? If Alice and Bob already share QRFs, instructions to perform some set of
measurements with respect to the already-shared QRFs are sufficient. In the device-independent quantum key
distribution protocol of [13], for example, Alice and Bob share a priori a Cartesian frame with respect to which
Bell tests can be made. This protocol clearly fails if Alice and Bob share no QRFs a priori and the adversary is
allowed to intercept and manipulate any QRFs they attempt to exchange.

Example 2. Transferring a qubit is transferring nonfungible information. Using a transferred qubit to
encode information requires a previously-shared QRF, e.g., a Cartesian frame for spin measurements. “Direct”
communication protocols in which qubits are serially transferred [14,15] therefore require previously-shared
QRFs. Similar considerations apply when tranferring a qubit in time (see [4] for details). Either multiple, serial
measurements or multiple, serial preparations (e.g., [16]) of a qubit require an a priori time-invariant QRF that
implements a fixed measurement and/or preparation basis.
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Example 3. Any fungible information sent by Alice to Bob must be physically encoded [17]. The physical
system encoding the fungible information must itself be exchanged, so is effectively a QRF. To access the
encoded fungible information, the recipient must measure the state of this system, as noted already in the case
of the classical communication step in Bell measurements [18]. Hence QRF-exchange protocols that assume
independent fungible information exchange are technically circular. Identifying an encoded message as a message
is nontrivial in the absence of an a priori shared language, as the celebrated Voyager probe communications of
1977 exemplify. A shared language, however, can also be considered a shared QRF, as shown in the special case of
measurement operators below.

4. Implemented System Identification Operators Are Nonfungible

Observers identify physical systems by deploying system-identification operators. Such operators
are implemented by the physical structures of the observers. Given Lemma 1, it is easy to see
the following:

Theorem 2. An observer cannot determine, by finite observation, what operators identify a physical system X.

Proof. Suppose the opposite: That A can determine by observation that some finite set of operators
{Mj} identify X. A formal specification of the set {Mj} of operators is then, operationally, a fungible
description of X. By Lemma 1, however, no fungible description of X is sufficient to specify the
degrees of freedom of X. Hence the operators {Mj} do not, in fact, identify X, contradicting
our assumption.

Alternatively, Lemma 1 shows that no finite set of observations of an observer is sufficient to
determine the degrees of freedom of the observer. Hence no such set of observations is sufficient to
determine what set of system-identification operators the observer’s physical structure implements.

This result is in fact obvious: Alice can send fungible descriptions of her operators {MXA
j } and

{MPA
l } to Bob, but she cannot send her operators as physically implemented to Bob, as this would

require sending herself, or some component of herself such as her brain. Hence implemented system
identification operators are nonfungible; they cannot be transferred from one observer to another by
sending a finite bit string. They are effectively internal QRFs, inseparable from the physical structure
of the observer that deploys them. Alice’s and Bob’s passive uncertainty about whether they share
system-identification operators as internal QRFs is the source of their passive uncertainty about
whether they share any external QRFs.

5. Uncertainty about Operator Sharing Induces Decoherence

As shown in [1], uncertainty about whether a QRF is shared induces decoherence. Briefly, even
if Alice prepares the transferred QRF token in a pure state, Bob cannot determine that it is pure;
his uncertainty about whether his operators {MXB

j } and {MPB
l } pick out the same system as Alice’s

operators {MXA
j } and {MPA

l } is equivalent to uncertainty about system preparation. Bob’s measured
pointer state |XB〉 with respect to his local frame is, therefore, mixed even if Alice’s preparation of
|XA〉 is pure with respect to her local frame.

The local operational indistinguishability between active and passive uncertainty about
reference-frame sharing renders environmental and reference-frame induced decoherence locally
operationally indistinguishable. To see this, consider the situation as represented by quantum
Darwinism [19,20]. Here multiple observers interact with multiple partitions Ek of the environment
E of some system S. Environmental decoherence acting at the S− E boundary redundantly encodes
the eigenvalues of the interaction HSE into each of the Ek; the observers obtain this information by
mutually-nondisturbing interactions with their respective Ek as sketched in Figure 3. Agreement
among the observers about the state of S is enforced by the redundant encoding, which is in turn
enforced by the “einselection” of the eigenvalues of HSE as the only stably-encodable classical
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information. Stability is defined by a prediction sieve requirement, [HS + HSE, Pψ] = 0 [11], where Pψ

projects the stable, and hence observable, state ψ of S.

Figure 3. Quantum Darwinism [19,20]: Observers k interact with disjoint partitions Ek of the
environment E of S, each of which encodes the eigenvalues of HSE. Redundancy of encoding and
hence agreement among the observers k clearly requires that HSE be independent of the partitioning of
E into the Ek.

In this situation, the environmental partitions Ek each serve as QRFs that their respective observers
k employ to measure the state of S. As the observers are by assumption mutually isolated, they
share no other QRFs for their measurements of S. As no pair of observers shares a reference frame,
they are limited to the exchange of fungible information, i.e., formal specifications of their local
interactions HSEk and observational outcomes. The latter will agree if the HSEk are uniform within the
measurement resolution, i.e., provided the eigenvalues of HSE are independent of the partitioning of E
into the Ek. If this requirement is violated, the predictability sieve fails, the encoding of eigenvalues
is not redundant, and the observers k have no basis for claiming to observe the same system S.
The observers cannot, however, operationally determine that the eigenvalues of HSE are independent
of the partitioning of E while each restricted to their own partition, and hence QRF Ek [21]. They
cannot, therefore, operationally determine that they are observing the same state ψ or even the same
system S.

6. Conclusions

It is a standard assumption of all empirical science that observers are interchangeable. Implicitly,
this is an assumption that observers in fact implement the same measurement operators, and hence
the same “internal” QRFs. If this is the case, they share nonfungible information a priori, and hence can
share additional nonfungible information implemented by exchangable QRFs.

Finite observers cannot, however, operationally determine that they implement the same
measurement operators, and hence cannot operationally determine that they are interchangable.
They cannot, therefore, operationally determine that they share an exchangable QRF. This uncertainty
induces decoherence. We suggest that the “shared classical world” that must be assumed to describe
experiments as independently reproducible results from this decoherence.
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The following abbreviation is used in this manuscript:

QRF Quantum reference frame
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