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Abstract

Recent theories developing broad notions of context and its effects on inference are becom-
ing increasingly important in fields as diverse as cognitive psychology, information science and
quantum information theory and computing. Here we introduce a novel and general approach
to the characterization of contextuality using the techniques of Chu spaces and Channel The-
ory viewed as general theories of information flow. This involves introducing three essential
components into the formulism: events, conditions and measurement systems. Incorporating
these factors in relationship to conditional probabilities leads to information flows both in the
setting of Chu spaces and Channel Theory. The latter provides a representation of semantic
content using local logics from which conditionals can be derived. We employ these features to
construct cone-cocone diagrams, commutativity of which enforces inferential coherence. With
these we build a scale-free architecture incorporating a Bayesian-like hierarchical structure, in
which there is an interpretation of active inference and Markov blankets. We compare this ar-
chitecture with other theories of contextuality which we briefly review. We also show that this
development of ideas conveniently accommodates negative probabilities, leading to the notion of
signed information flow, and address how quantum contextuality can be interpreted within this
model. Finally, we relate contextuality to the Frame Problem, another way of characterizing a
fundamental limitation on the observational and inferential capabilities of finite agents.
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1 Introduction

The observable behavior of biological, psychological, and social systems characteristically depends
on the context of observation in ways other than those expected on the basis of prior probabilities
or anticipated in an experimental design. Indeed, to ask how can we tell by observation the “true”
context of an observed behavior is to ask a fundamental question in the psychology of perception.
Such “contextuality” in the behavior of complex systems has traditionally been regarded as a prac-
tical problem of limited experimental control that could, in principle, be eliminated by obtaining
more uniform experimental subjects and achieving better control of experimental conditions. This
traditional view of contextuality as merely a practical limitation is, however, increasingly under
strain. Over 50 years ago, Bell (1966) and Kochen and Specker (1967) proved that quantum the-
ory, the foundation not only of modern physics but of much current technology, requires a form
of contextuality even for elementary particles (see Mermin, 1993; Abramsky and Brandenburger,
2011; Dzhafarov and Kon, 2018; Fine, 1982; Khrennikov, 2009, for reviews and results). Briefly,
values cannot be assigned to observable properties of elementary particles without specifying which
properties are to be simultaneously observed. Here the “problem” of context dependence is not
practical, but rather a strict consequence of the mathematical formulism of quantum theory. Nu-
merous experiments have now confirmed that the observable behavior of elementary particles is,
indeed, context-dependent as quantum theory requires (e.g. Bartosik et al., 2009; Kirchmair et
al., 2009). If contextuality is intrinsic to elementary particles – or to the process of measuring
properties of elementary particles, however executed or controlled – could it not also be the case
that the observable behavior of biological, psychological, and social systems is intrinsically contex-
tual, and that no amount of experimental and theoretical improvement can render such behavior
context-free?

Determining whether a particular instance of observed behavior of a complex system, particu-
larly one with memory, exhibits intrinsic contextuality is not straightforward. When a “context” is
superficially ascribed to a behavior, many factors can contribute, e.g. the type of questions asked,
the responses to these questions, the ambient environment of the study, the type of sample space,
etc. In quantum systems, a set of measurements (i.e. a set of probability distributions of mea-
surement outcomes) exhibits “contextuality” (i.e. exhibits “intrinsic” or “true” contextuality) if it
cannot be characterized by a mathematically-consistent, context-free, joint probability distribution.
Asking whether a set of measurement outcomes exhibits intrinsic contextuality is, in this case, ask-
ing whether a consistent (globally defined, globally connectable) joint probability distribution exists
or not (cf. Abramsky and Brandenburger, 2011; Fine, 1982). Various formal methods for answering
this question in a quantum-theoretic setting in which “no-signalling” conditions preventing classical
communication can be imposed have been developed (see e.g. Abramsky and Brandenburger, 2011,
2014; Abramsky, Barbosa and Mansfield, 2017; Barbosa et al., 2019; Döring and Frembs, 2019;
Frembs and Döring, 2019); cf. Kochen and Specker (1967). The formulism of Contextuality-by-
Default (CbD) (Dzhafarov and Kujala, 2017a; Dzhafarov, Cervantes and Kujala, 2017b; Dzhafarov
and Kon, 2018) approaches such questions by labeling contexts, and including them explicitly in
conditional probabilities, rendering the probability distributions context-dependent. A set of ran-
dom variables within a set of contexts exhibits intrinsic contextuality, in the latter formulism,
whenever distinct contexts induce a difference between the distributions of random variables that
exceeds the difference between the individual, within-context distributions of those variables. This
criterion effectively generalises the intrinsic contextuality of quantum theory to the case in which
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other properties of a context, e.g. the order in which questions are asked, also affect the distribution
of a variable of interest. This kind of “direct influence” is generally avoided by experimental de-
sign, particularly by imposing no-signalling conditions, in physics but is virtually inescapable when
studying complex, macroscopic systems. Dzhafarov, Kujala and Cervantes (2016b) showed that
a variety of “context effects” previously reported in the psychological literature could in fact be
explained by such direct influences, and hence were not cases of intrinsic contextuality. Cervantes
and Dhzafarov (2018) and Basieva et al. (2019) employed CbD to design psychological experiments
that do demonstrate intrinsic contextuality, showing unambiguously that this principled form of
contextuality occurs in complex, macroscopic systems as well as in simple systems at the microscale.

While these various approaches to contextuality to date have focused on its application to
observed phenomena, the possibility of intrinsic contextuality in biological, psychological and social
systems also raises immediate issues for the theoretical modeling of observers, particularly human
observers. All predictive-coding or “Bayesian brain” approaches, in particular, require the observer
to implement well-defined prior probability distributions (e.g. Knill and Pouget, 2004; Bubic, von
Cramon and Schubotz, 2010; Clark, 2013) or sampling methods that are well-behaved in relevant
limits (Sanborn and Chater, 2016). The concept of variational free energy on which active inference
models are based (Friston, 2010; Friston, Kilner and Harrison, 2006; Friston et al., 2015b) becomes
undefined if self-consistent prior probability distributions cannot be constructed. As such models
have also been shown to apply to general biological systems (Friston, 2013; Friston et al., 2015a;
Kuchling et al., 2019), this latter concern applies to models at multiple scales.

Our goals in this paper are two-fold: first, to model intrinsic or “true” contextuality using the
general, category-theoretic methods of Chu spaces and Channel Theory, and second, to employ this
formulation to reconstruct hierarchical Bayesian inference in a context-dependent way. We have
previously shown how inference can be represented using the formulism of this paper, employing
only the quantum theory of separable systems and the thermodynamics of measurement interac-
tions (Fields and Glazebrook, 2020a). Here we begin by reviewing the category-theoretic formulism
of Chu spaces and morphisms, with examples in §2. We use the tools from §2 in §3 to develop an
initial category-theoretic formulation of contextuality that allows us to distinguish the complemen-
tary roles played by “preparation procedures” and “measurement contexts” in general observational
settings. We briefly review some other formal models of contextuality, with which ours is consis-
tent, in §4, and further reviewing some interpretational issues around the preparation-measurement
distinction in §5.1 and §5.2; these become important in §7. In §5.3 we briefly consider a formal
extension to signed probability measures, where “signed partitions” and “signed events” can be
introduced (cf. Abramsky and Brandenburger, 2014). We then turn in §6 to the semantically-richer
methods of Channel Theory, which provide a more explicit representation of inferential structure in
the form of sequents and (regular) theories that give rise to local logics and maps, called (logic) in-
fomorphisms, between them (Barwise and Seligman, 1997; Seligman, 2009). Appendix §A provides
a specified explanation of these terms along with their formal definitions. It is from the sequents
of these local logics that we are able to derive “conditionals” (in §6.3) such that the information
channels function as inferential mechanisms. This construction is made explicit when we introduce
Cone-Cocone Diagrams (CCCDs; Fields and Glazebrook, 2019a) as a natural, scale-free representa-
tion of Bayesian inference, and then integrate “contextual” elements into this representation. Using
the CCCD representation, we are able in §7 to construct arbitrary (quasi-)hierarchical Bayesian
networks, as required for active inference formulated in terms of co-deployable observables (Defini-
tion 7.1). We state and prove, in §7.3, our central result that failure of diagram-level commutativity
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in a CCCD corresponds to inadmissibility of a self-consistent probability distribution, and hence
to intrinsic contextuality, as we define it in this paper, as a condition of non-co-deployability of
measurement operators (again see Definition 7.1). Thereafter we apply this development of ideas to
recover, among other things, a new theoretical and inferential role for the Markov blanket concept
(Clark, 2017; Friston et al., 2015a; Kuchling et al., 2019): it is both the “locus” at which free
energy is minimized and the epistemic barrier that keeps the contextual information hidden from
the observer. Significantly, this holds true for any physical system interacting with its environment
in which information is preserved, be it classical or quantum (Fields and Marcianò, 2019a). We
also use these ideas to formulate a precise and strong version of the Frame Problem (McCarthy
and Hayes, 1969, see Shanahan (2016) for review), and to show how this classic problem from AI
relates to contextuality.

While the results presented here are primarily technical, they open a path to applications in a
number of areas where contextuality has largely been neglected, but is important in practice. We
have, in particular, previously employed the CCCD representation used here to model cognitive
studies of visual object identification and categorization, including mereological (i.e. part-whole)
classification (Fields and Glazebrook, 2019b). As we discuss below (§7.3) in connection with the
“Snow Queen” experiment of Cervantes and Dhzafarov (2018), context effects on categorization can
manifest as semantic inconsistencies that render choice behavior incoherent with reported beliefs.
We have also shown how to reconstruct dual process theories of cognition (e.g. Evans, 2008) within
the CCCD framework (Fields and Glazebrook, 2020b). This latter work develops a representation of
hierarchical Bayesian inference within a Global Neuronal Workspace (GNW) architecture (Dehaene
and Naccache, 2001; Shanahan and Baars, 2005); however, it does not consider contextuality. The
current construction renders this previous model contextuality-compliant, and provides the building
blocks needed to incorporate context switching as well as attention switching into GNW models.
Our main formal result, Theorem 7.1 shows, consistent with the fundamental information-physics
considerations discussed in Fields and Glazebrook (2020a), that intrinsic contextuality can always
be associated with non-commutativity, and hence significant, non-direct (in the sense of Dzhafarov,
Kujala and Cervantes, 2016b) order effects, between observations and/or actions. This provides
an operational criterion for identifying application settings in which intrinsic contextuality can be
expected; we discuss several examples in §7.3. Naive “sleeping dog” heuristics can be expected to
fail as Frame Problem solutions in such settings. Finally, and from a more probability-theoretic
point of view, our results further support those of Dzhafarov and Kon (2018) in showing that the
distinction between “quantum” and classical probabilities lies not in any ontological difference, but
rather in what has been explicitly labeled.

2 A background to Chu spaces and examples

For the reader’s benefit, we start with a short primer on the very basic concepts of Category Theory.
This is a general mathematical language for describing objects and relations (see e.g. Adámek,
Herrlich and Strecker, 2004; Awodey, 2010). A category C consists of collections of objects, and
arrows (i.e. directed relations, or morphisms) between objects, satisfying two requirements: 1)
arrows compose associatively, i.e. for objects A,B,C,D, if f : A→ B, g : B → C, and h : C → D,
then hgf : A → D, and 2) each object has an identity arrow idA : A → A. Mathematically
paired concepts such as sets with functions, sets with relations, vector spaces with linear mappings,
groups with group homomorphisms, topological spaces with continuous mappings, measure spaces
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with measurable functions, as the respective objects and arrows, are familiar examples of categories.

2.1 Chu spaces and Chu morphisms

One of the simplest categories is the category of Chu spaces (Barr, 1979, 1991; Pratt, 1995, 1999a),
any object in which is defined as follows:

Definition 2.1. Let K be a set, with no structure assumed. A Chu space A = (A, r,X) over K
consists of sets A and X, and a satisfaction relation (or evaluation function) r : A×X −→ K.

Often A and X are referred to as sets of “objects” and “attributes”, respectively.

Example 2.1. A basic Chu space

Chu spaces frequently give rise to matrix representations. As a simple example, take a set (of
objects) A = {a, b, c}, with K = 2 = {0, 1}. This can be represented as the Chu space:

r

a 0 1 0 1 0 1 0 1
b 0 0 1 1 0 0 1 1
c 0 0 0 0 1 1 1 1

It is often the case that Chu spaces may be separable, extensional or biextensional (i.e. both
separable and extensional) or admit a biextensional collapse (see e.g. Pratt, 1995, 1999a; Zhang
and Shen, 2006, for precise details). These terms can be conveniently explained thanks to the
matrix representation: ‘separable’ means that all rows are distinct, and ‘extensional’ means that
all columns are distinct. In the ‘biextensional collapse’, any repetitions in the rows of objects
and columns of attributes are factored out. In practice this removes unnecessary repetitions in
the content of information, and hence minimizes the amount of processing required by a given
algorithm.

By associating objects with attributes, Chu spaces provide a natural model of the process
of categorizing objects by their attributes; the categorization process implements the satisfaction
relation r. They easily generalize to multi-valued satisfaction relations, e.g. relations satisfied with
some probability. The arrows in the category of Chu spaces relate one categorization process to
another:

Definition 2.2. A Chu transform (morphism) of a Chu space A = (A, r,X) to a Chu space
B = (B, s, Y ), is a pair of functions (f, f̄) with f : A −→ B, and f̄ : Y −→ X, such that for all
a ∈ A, and y ∈ Y , we have s(f(a), y) if and only if r(a, f̄(y)).

The above definition specifies an adjointness or continuity principle for Chu spaces. These trans-
forms constrain both the objects and attributes of the Chu spaces to which they relate, forcing
the two categorization processes to “line up” in the way one would intuitively expect. If we now
consider Chu transforms (f, f̄) : A → B and (g, ḡ) : B → C, where C = (C, t, Z) is a third Chu
space, the Chu transform composition is given by (g, ḡ)(f, f̄) = (gf, f̄ ḡ) : A → C, which is a Chu
transform because t(gf(a), z) = s(f(a), ḡ(z)) = r(a, f̄ ḡ(z)). Chu spaces valued in K along with
their Chu transforms as composed, give rise to a category denoted by Chu(Set,K).
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Chu spaces are more general than topological spaces, and they have been extensively applied in
theoretical computer science and event process theories (Pratt (1995, 1999a,b, 1997); see also Bar-
wise and Seligman (1997)), and in physical and observational models (Abramsky, 2012; Fields and
Glazebrook, 2020a; Gratus and Porter, 2006). In working set-theoretically, there is considerable
scope for the choice of arguments in the Chu space, as well as in the choice of the corresponding
relation r. These include probabilistic (in particular, conditional) relations (Allwein, Moskowitz
and Chang, 2004; Allwein, Yang and Harrison, 2011; Kreinovich, Liu and Nguyen, 1999; Nhuy
and Van Quang, 2001; Pratt, 1995), fuzzy-type relations (Nguyen et al., 2001; Papadopoulos and
Syropoulos, 2000), spatial observations (Gratus and Porter, 2006), object identification and mere-
ological reasoning (Fields and Glazebrook, 2019b), and dual process theories of cognition (Fields
and Glazebrook, 2020b); numerous examples are discussed in Fields and Glazebrook (2019a). A
significant fact is that every category C whose arrows form a set K (i.e. every ‘small’ category),
embeds fully into Chu(Set,K), as shown in Pratt (1996, 1997).∗ Indeed all theories of ‘relational
structures’ with and without topological structure can be modeled by Chu spaces (Pratt, 1997);
examples include studies pertaining to analogy and metaphor (e.g. Brown and Porter, 2006; Fields,
2011, 2013a; Gentner, 1983; Gentner and Markman, 1997; Old and Priss, 2001). Below we list
several such examples with some basic details included.

2.2 Examples

Example 2.2. Topological spaces

Consider a topological space (A,U), where A is the set of points, and X = U is the set of open
sets. Taking r = ∈ (membership), and K = 2 = {0, 1}, gives a Chu space (A, r,X). In the matrix
representation, the space is extensional (i.e. no repeated columns). Relative to the set of open
sets, the columns are closed under arbitrary union and finite intersection. Here the relationship is
interpreted as: r(a, U) = 1 implies a ∈ U , and r(a, U) = 0 implies a /∈ U , given an open set U . In
this way the category Top of topological spaces along with their continuous maps, fully embeds as
Top −→ Chu(Set,2). For further specifics in the topological context, see Pratt (1999a).

Example 2.3. Types as processes

In Pratt (1997), Example 2.2 generalizes to a type when relaxing the K-valued membership relation
to r(a, x) indicating “the degree to which” the point a belongs to the open set U (cf. Nguyen et
al., 2001; Papadopoulos and Syropoulos, 2000). A process is specified when taking K to be a set
of “atomic” states, A a set of ‘events’, X a set of “global” states. The process is then a sequence
of events, each of which projects some atomic state out of the global state. In this case r(a, x)
is the atomic state picked out by an event a occurring in a global state x. Taking at ∈ A to be
a measurement made at time t using some operator M , and X to be the set of states of some
quantum system S, r(at, x) becomes the observational outcome obtained by acting on S with M
at t.

Example 2.4. Probability spaces

∗Basically this means that the induced mapping F : C −→ Chu(Set,K) realizes F (C) as an embedded subcategory
of Chu(Set,K) which consists of some objects of the latter and all of the arrows between them (see e.g. Adámek,
Herrlich and Strecker, 2004; Awodey, 2010). An example is the category of conditional probabilities (Culbertson
and Sturtz, 2013) whose objects consist of countably generated measurable spaces, and whose arrows belong to a
semigroup of Markov kernels.
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Recall that a probability space P consists of a triple P = (A,Σ, µ) where A is a set of events,
Σ is a σ-algebra over on A, and µ is a probability measure representing the probability that a
given event occurs. We define a Chu space (A, r,Σ), where r(a, z) if and only if a ∈ z. This
is realized by a probability in the usual way via r : A × Σ −→ [0, 1] (see e.g. Allwein, Yang and
Harrison, 2011; Allwein, Moskowitz and Chang, 2004; Kreinovich, Liu and Nguyen, 1999; Seligman,
2009). Particularly relevant to the inferential processes studied here, there are several ways to define
conditional probabilities via Chu spaces (or Classifications – see below) as demonstrated in Allwein,
Yang and Harrison (2011); Allwein, Moskowitz and Chang (2004); Kreinovich, Liu and Nguyen
(1999); Nguyen et al. (2001); Nhuy and Van Quang (2001). The most direct way is to assume that
we have, in the usual probabilistic sense, two sets of events A and X that are subsets of the same
probability space P, and a function r : A × X −→ [0, 1], taken to be r(a, x) = p(a|x) when the
latter is defined, to construct the Chu space (A, r,X) (see e.g. Kreinovich, Liu and Nguyen, 1999).

Example 2.5. Bayesian belief network

Following Schorlemmer (2002), let V = {V1, . . . , Vn}, n ≥ 1, be a set of variables forming a
configuration bV , the latter defined as a conjunction of truth-valued assignments to the variables in
V . Let BV = {bV } denote the set of all such configurations. A Bayesian belief network B = (G,P)
consists of i) a directed acyclic graph G = (V,Arr) consisting of nodes V and a set of arrows Arr,
and ii) a set P = {PVi : Vi ∈ V } of real valued functions PVi : BVi × Bprec(Vi) −→ [0, 1], where
prec(Vi) denotes the set of variables that immediately precede Vi in the graph. The set of functions
P uniquely determines a joint probability function PV : V −→ [0, 1] extended to conditional
probabilities using Bayes’ rule, thus leading to a function P : B ×B −→ [0, 1], where B denotes the
set of all configurations, i.e. B = {bW : W ⊆ V }. From this we obtain a Chu space corresponding
to B, given by (B, r,B) where r is a real-valued function as defined via the conditional probabilities
across all configurations; i.e. r(bU , bW ) = P(bU |bW ).

Example 2.6. Event space structure

Let A be a countable set of general events (‘atomic’ events, events observed or experienced, the
imposition of boundaries, etc.) causally ordered by a partial ordering “≤”: given a1, a2 ∈ A, this
means that a1 precedes a2 in time; equivalently, if a2 has happened to occur, then so has a1. As
in Pratt (1997), A can be conveniently labelled by some algebra of “actions” denoted by Λ, with
assignment λ : A −→ Λ, such that with ordering and labelling we obtain a partially ordered multi-
set (A,≤,Λ). In order to deal with possibly conflicting events, we introduce a conflict relation #,
a symmetric irreflexive binary operation which specifies the non-occurrence of two events. Hence,
a1#a2 rules out a1, a2 occurring simultaneously in a process, and a choice has to be made between
them once preceding events have occurred. The axiom of conflict is that if a1#a2 and a2 ≤ a3,
then a1#a3. Following Pratt (1997), we thus arrive at the Chu space of events (A, r, Z), where
Z denotes the set of order ideals of (A,≤) that do not contain both a1 and a2 when a1#a2, and
where r : A×Z −→ K.† Other approaches to event space structures involving “probabilistic runs”
of (A,≤,#) are studied in Varacca, Völzer and Winskel (2006); Winskel (1982).

Example 2.7. Chu flows

†In Pratt (1997), K = 2 is mainly taken, but other possibilities are discussed when working with the biextensional
(full subcategory) chu(Set,K) of Chu(Set,K).

9



Given Chu spaces that are related by a Chu transform, we may ask what type of information the
transform preserves. A Chu flow of information (van Benthem, 2000, cf. Barwise and Seligman
(1997)) may specified by a “flow formula” constructed from the elements of the following schema:

r(x, a) | ¬r(x, a) | ∧ | ∨ | ∃x | ∀a. (2.1)

Any such formula ψ(a1, . . . , ak, x1, . . . , xm) specifies which objects xi have which attributes ai in
the Chu space in which it applies. van Benthem (2000) show that for finitely-structured Chu spaces
A and B, the existence of a Chu transform A −→ B is equivalent to every flow formula valid in
A being valid in B as well. The transform A −→ B can, in this case, be viewed as “transporting”
the information encoded in valid flow formulas from A to B; it can thus be thought of informally
as a “channel” from A to B, and as implicitly providing a sense of “spatial” and/or “temporal”
separation between A and B (see also Krötzsch, Hitzler and Zhang, 2005). This flow of information
through channels will be more fully specified in terms of “classifiers” and “infomorphisms” in §6.1.

Example 2.8. Kullback-Leibler divergence and Free Energy

This example provides an initial formulation of a Bayesian-like inferential mechanism using the
Chu-space concepts developed above; a richer development with Channel Theory will be described
in §6. Given discrete probability distributions P and Q on the same space X, the Kullback-
Leibler Divergence (KLD) DKL(P ‖ Q) =

∑
x P (x) log(P (x)/Q(x)) measures the “surprise” of an

observer encountering P when expecting Q. The variational free energy (VFE) of an environment
characterized by P for an observer with prior probabilities Q is DKL(P ‖ Q) minus the observer’s
ability to predict P given Q, i.e. the observer’s ability to update their prior before making the
relevant observation (Friston, 2010; Friston and Stephan, 2007; Friston, 2013). The KLD is seen
as a “cross entropy” term, such that free energy F = surprise + cross entropy. More specifically,
consider a sensory input s̃, a world model m, ϑ some unknown quantity causing s̃, µ a quantity
depending upon internal (e.g. brain) states, and a recognition density v(ϑ|µ). Then (Friston, 2010;
Friston and Stephan, 2007; Friston, 2013):

F = − ln p(s̃|m) +D(v(ϑ|µ)‖p(ϑ|s̃)) (2.2)

This last expression can be reformulated in terms of expectations with respect to the recognition
density v, as:

F = −〈ln p(s̃, ϑ|m)〉v + 〈ln v(ϑ|µ)〉v (2.3)

(as noted in Collel and Fauquet (2015)). Minimizing free energy involves minimizing surprise
and consequently, prediction error. Cross entropy is minimized by inferential updating of internal
representations in tandem with revising the recognition density v to a finer approximation of the
“true” distribution. Clearly, any such predictive ability requires observing something about the
environment that would indicate a need to adjust expectations, as demonstrated in e.g. Friston
and Kiebel (2009); Friston et al. (2015b,a). This naturally points to “contextual” factors, as will
be discussed throughout the remainder of this paper (see in particular §8.2 and §8.3).

3 A Chu space formulism of context

Here we proceed to formulate a Chu space model for dealing with contextuality, and work at the
purely set theoretic level. We briefly review some related approaches to contexuality in §4. Consider
then countable (in practice, finite) sets:
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i) A an “event” set (e.g. as in §2.6) of observed value combinations, as related to

ii) B a set of conditions specifying “objects/contents” or “influences,” and

iii) R a set of contexts (or, in certain instances, a set of “detectors” or “methods”).

We can interpret the set B as B = BM ∪ BC (disjoint union), where BM contains “ob-
jects/contents” or “degrees of freedom” that are observed or measured in some event a ∈ A, and
BC contains what is not observed in the events in A. From a traditional perspective, in which all
observations are assumed a priori to be context-independent, it would seem appropriate to consider
the conditional A|BM , i.e. that the observed events depend only on the observed conditions. This
is the assumption of local, complete measurements familiar from classical physics, or equivalently,
the assumption of task-environment circumscription familiar from “good old-fashioned” artificial
intelligence (Dietrich and Fields, 1996). We will, however, opt to consider a ‘large’ space:

X := B ×R = (BM ∪BC)×R (3.1)

by assuming that A,B and R are subsets of the same (even larger) probability space P as in Example
2.4.‡ Here we do not make a priori assumptions about the corresponding types of probability
distributions (e.g. discrete versus continuous), the nature of random variables, or possible orders of
“connectedness” of distributions (however, see §4 and §7 for consideration of this latter property).
Note that the formulation of (3.1) is a convenient way of expressing how contexts can be paired
with, or parametrized by conditions (including unobserved conditions), and vice-versa. We then
formulate the Chu space A = (A, r,X), where the satisfaction relation is the conditional probability
r(a, x) = p(a|x) = p(a|{b, c}), whenever defined, for a ∈ A, b ∈ B and c ∈ R. Collectively, the above
ingredients are those we take to model a system of “observables” in what follows.

Let Aα ⊂ A be a subset of “events” occurring within a corresponding subset of “contexts”
Rα ⊂ R. Assuming for now that the set of conditions B is fixed, and setting Xα = B × Rα, leads
to a Chu space Aα = ({Aα}, r, {Xα}), suitably indexed by α. These constituents of Aα are, in
all realistic cases, considered to be finite, but we can also consider the limit in which they are
countable. In principle, running through a sequence of the Aα across some range of α, leads to a
Chu flow as in Example 2.7. This will be specified in terms of an information flow of “classifiers”
in §7.1 below. Note that this flow does not in itself create couplings via marginal distributions, for
instance, but it does preserve logical cohesion in information flow as explained in Example 2.7. At
this stage, one may ask if imposing a joint distribution on {Aα} may be related to the existence of a
cocone (colimit) of a system of Chu flows interpreted inferentially. To further specify this question,
and to respond to it, we will use the Channel Theory formulation in §7.1, as it provides a natural
representation of inference. In this richer representation, we can use the existence of a cocone to
distinguish between intrinsic contextuality and a context-independent description.

We point out that this interpretation of contextuality in terms of Chu spaces (to be made
more specific in §7.1) makes no “physical” or otherwise scale-dependent assumptions§; hence it can
be expected to apply to “observations” at any scale. This immediately suggests the possibility
of a hierarchical theory in which observations are made simultaneously at multiple scales, with

‡In physics parlance, this amounts to “going to the Church of the Larger Hilbert Space” where there are enough
degrees of freedom to define pure states (cf. Chiribella, D’Ariano and Perinotti, 2016).
§We interpret “scale” here broadly to include not only physical (e.g. length or time) scales but also organizational

scale within a complex system.

11



information transfer between scales contributing to the updating of prior probabilities on each
measurement cycle. Notably, this a core idea of “Bayesian brain” approaches to cognition (see
e.g. Friston (2010); Friston and Kiebel (2009)). In §6, while essentially continuing to work in the
Chu category, we will re-formulate the model of “observation” as a flow of information through
a (quasi-)hierarchical inferential process in the setting of classifications and local logics, where
general countability of sets is admissible. This will accompany an alternative means of formulating
conditional probabilities. First, however, we consider some issues of interpretation motivated by
the original derivations of intrinsic contextuality to explain empirical phenomena in physics. We
will return to these issues with the full conceptual framework of active inference in §8.2.

4 A brief review of related probabilistic models for contextuality

4.1 The basic ingredients of CbD

As mentioned in the Introduction, CbD adopts the view that all measurements are carried out in
some non-trivial context, and hence that all measurement outcomes should carry a context label,
with outcomes obtained in different contexts amenable to a coupling of probability distributions.
For an outline of basic ideas, it will be sufficient to discuss cyclic and binary systems following
Dzhafarov and Kujala (2017a); Dzhafarov, Cervantes and Kujala (2017b). One commences with
a measurement system R in which a typical measurement outcome, denoted Rcq, is taken to be
a random variable, described as follows. Let Q be a set of properties representing, for instance,
“objects” or “inputs” depending upon the observation or application in question; thus q ∈ Q is
called the content of Rcq. The superscript c specifies how, e.g. with what tools or instruments,
q is measured, and is called the context of Rcq. In this way, a content-context (c-c) pair (q, c)
uniquely specifies the random variable Rcq within the system R in question. It is assumed that Rcq
is characterized by a distribution, based on sufficient sampling. If multiple random variables are
measured in a single context (e.g. a pair (Rc1, R

c
2)) these have a joint distribution. There is, however,

no guarantee that random variables measured in different contexts (e.g. a pair (R1
2, R

2
1)) can be

stochastically related; a priori they are stochastically unrelated, and thus generally not considered to
comprise well-defined “events” such as [R1

2 = x,R2
1 = y]. The formal question of interest is, then, to

characterize the conditions under which a well-defined (in the sense of satisfying the Kolomogorov
axioms) cross-context joint probability distribution exists.

This starts by seeing two content-sharing random variables (R1
q , R

2
q) as comprising a connection

between contexts. In a connection, the content elements are always, by default, considered to be
pairwise stochastically unrelated, and hence cannot be considered as the same random variable
even if they are identically distributed. A system R is said to be consistently connected if for
every content q, and contexts c, c′ containing q, the distributions of Rcq and Rc

′
q are the same.

Essential to this formulism is the general notion of coupling of random variables (see e.g. Lindvall
(1992)). Context-induced changes in the individual distributions, i.e. how R1

q differs from R2
q , are

characterized by determining whether they have a maximal coupling.
The first step is to replace R1

q and R2
q with jointly distributed random variables T 1

q and T 2
q that

have the same respective individual distributions. One then searches for such a replacement with
the maximal value of P[T 1

q = T 2
q ], which given a maximal coupling always exists, and is unique.

If R1
q and R2

q are consistently connected, and this preserved under the maximal coupling, then R1
q

and R2
q become stochastically related via introduction of the former. So as not to lose the joint
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distribution of (R1
q , R

1
q′ , . . .), and the joint distribution of (R2

q , R
2
q′ , . . .), a coupling of all random

variables is to be taken. If, however, R1
q and R2

q are not consistently connected, they remain
stochastically unrelated. In this case R is deemed to be a contextual measurement system, where
in this case “contextual” indicates intrinsic contextuality, i.e. lack of consistent cross-context joint
distributions. Otherwise, R is non-contextual ; equivalently, there exists a coupling of all random
variables such that the subcouplings corresponding to connections that are maximal. In this latter
case, all apparent “context effects” are due to direct influences, i.e. changes in the within-context
distribution(s) of one or more random variables induced by changing the measurement context, as
shown for several examples by Dzhafarov, Kujala and Cervantes (2016b).

More generally, suppose R1
q , . . . , R

k
q (k > 1) is a connection of a system. A coupling (T 1

q , . . . , T
k
q )

of R1
q , . . . , R

k
q is said to be multimaximal if for any m > 1, and for any subset (T i1q , . . . , T

im
q ) of

(T 1
q , . . . , T

k
q ), the value of P[T i1q , . . . , T

im
q ] is the largest possible among all possible couplings of

(Ri1q , . . . , R
im
q ). In fact, there always exists a maximal coupling of any set of random variables,

and a multimaximal coupling (T 1
q , . . . , T

k
q ) always exists for a connection R1

q , . . . , R
k
q with binary

random variables (Dzhafarov and Kujala, 2017a, Coroll. 1). Further, a coupling of a (c-c) system
is said to be multimaximally connected if every subcoupling of this coupling corresponding to a
consistent connection of the system is a multimaximal coupling of this connection. This leads to
a (c-c) system of binary random variables decreed to be noncontextual if it has a multimaximally
connected coupling. Otherwise it is said to be contextual. A measure of contextuality, in terms
of ‘quasi-couplings’, is prescribed by Dzhafarov and Kujala (2017a, Theorem 4) to which we refer.
Such measures indicate the extent to which context effects cannot be attributed to direct influences,
and hence indicate “intrinsic” or “true” contextuality, also without scale-dependent assumptions.
Examples of applications of contextuality measures to demonstrate intrinsic contextuality in psy-
chological data may be seen in Cervantes and Dhzafarov (2018) and Basieva et al. (2019).

Example 4.1. Measuring conditional probabilities across contexts

Let us exemplify the formulism of §3 as it relates to the above setting. Suppose that the set
X = B × R in §3 comprises a set of binary random variables governed by a measurement (c-c)
system as described above that is not consistently connected, and in which some subsets {ai} of
events in A, and {bj} of conditions in B are measured in every context in R (Note that with this
assumption, we have effectively identified B with the set Q of contents, and R with the set C of
contexts.) Then there is at least one pair c, c′ of contexts, c 6= c′, and at least one event a ∈ {ai},
and condition b ∈ {bj}, such that p(a|{b, c}) 6= p(a, |{b, c′}). This statement has a version in a
channel-theoretic representation of contextuality, which we prove below as Corollary 7.1.

4.2 The contextual fraction

An alternative approach to measuring intrinsic contextuality has been proposed by Abramsky, Bar-
bosa and Mansfield (2017) (see also Barbosa et al. (2019)). Here a “measurement scenario” is for-
malized as an empirical model e that is specified by a probability distribution expressed as a convex
combination of a non-contextual model eNC and a “no-signalling” model e′, i.e. e = λeNC+(1−λ)e′,
with λ ∈ [0, 1]. The no-signalling condition assures full statistical independence of the random vari-
ables encompassed by e′ (for a general discussion, see Mermin (1993)); hence it rules out direct
influences within e′ while allowing contextuality. Relative to some global probability distribution
on the outcomes to all measurements, the maximum possible, admissible value of λ in such a de-
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composition of the local model e is called the non-contextual fraction NCF(e) of e; the contextual
fraction is CF(e) := 1−NCF(e). The model e is said to be contextual if the corresponding family of
probability distributions in Abramsky, Barbosa and Mansfield (2017) cannot itself be obtained as
the marginals of the global probability distribution on the outcomes to all measurements. This has
a companion interpretation in terms of the non-existence of a global section of a sheaf of distribu-
tions defined over a “measurement cover” (Abramsky and Brandenburger, 2011) (cf. Fine (1982)).
As “all measurements” would include the ancillary measurements that, in the CbD formulism, say,
provide the context labels, this way of thinking about contextuality can be seen as an implicit, post
facto approach to determining whether intrinsic contextuality obtains in a data set assumed at
the outset to be context-independent. Barbosa et al. (2019) have employed this approach to study
the Bell inequalities (Bell, 1964, 1966) and their associated notion of “non-local” dependencies
(i.e. quantum entanglement) between random variables. A key common factor of these theories
pertains to non-consistently connected/non-globally definable probability distributions, which we
will discuss more generally in terms of “non-commutativity” in §7. ¶

5 Interpretative issues: Preparation, measurement, and (quasi)
probabilities

5.1 Measurement “conditions”

When we assume that the subsets Rα of the set of contexts R have not been fully characterized
by observation, or have not been noted explicitly when experimental data are recorded, or are sim-
ply not taken into account when computing probabilities of experimental outcomes, contextuality
becomes “quantum” contextuality in the sense of Kochen and Specker (1967). An observer only
measures the P (A|BM ) distributions across contexts, and finds that they violate classical prob-
ability (e.g. the Kolmogorov axioms). Both the subsets Rα, and the unobserved “background”
conditions BC amount in this case to “hidden variables” that influence the observed outcomes
while remaining undetected and possibly undetectable except via the post hoc methods of Abram-
sky, Barbosa and Mansfield (2017) addressed in §4.2 above.

Why should context matter? In physics, intrinsic contextuality poses the same challenges to
classical thinking as are posed by violations of Bell’s theorem: either strict locality or counterfactual
definiteness are ruled out (Bell, 1964, for review, again see Mermin (1993); Khrennikov (2009)).
Hence intrinsic contextuality is, from this point of view, very surprising. “Direct influences” of
context are not: all experiments involve a preparation step, the various aspects of which are all
observed, or at least could be observed, and the outcomes of these observations – i.e. the experi-
mental preparation itself – are obviously intended to influence the “experimental” outcomes that
follow. It is generally assumed when discussing physics experiments that all relevant aspects of
the preparation procedures have been observed, and hence that no unexpected direct influences
will appear as unanticipated “context effects.” This completeness assumption is often wrong in
practice; for a spectacular case, see §6.1 of OPERA Collaboration (2012). When discussing obser-
vations of biological, psychological, and social systems, however, this completeness assumption is

¶The quantum-theoretic approach to contextuality is also developed by other means in e.g. Döring and Frembs
(2019); Frembs and Döring (2019); Gudder (2019). In particular, Gudder (2019) introduces the notion of a “quantum
channel” formulated in purely functional-analytic terms, which differs (but is possibly relatable to) the category-
theoretic based Channel Theory of information as adopted in this paper.
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generally acknowledged to be unjustifiable, i.e. BC 6= ∅ is taken for granted and “context effects”
are expected, though of course unpredictable in detail.

In the framework of measurement systems, as presented in e.g. Abramsky, Barbosa and Mans-
field (2017); Dzhafarov, Kujala and Cervantes (2016a); Dzhafarov, Cervantes and Kujala (2017b), a
“context” is just a set of (possibly ancillary) measurements. In the analysis of Kochen and Specker
(1967), it is a set of measurements made with one, specified set of detectors following one, specified
preparation. Is this notion of a context adequate in practice? Could there not be “context effects”
between, e.g. the first and second halves of a single “experimental run” not explainable as direct
influences? Contextuality, in this case, would manifest as a within-run violation of the Leggett-
Garg inequality (Emary, Lambert and Nori, 2014). Here the question of how to circumscribe the
unobserved degrees of freedom BC becomes relevant (Fields, 2018). We return to this question in
§8.3 below.

5.2 Observer-dependent probabilities

The question of whether probabilities are objective features of the world or subjective beliefs of ob-
servers has been debated, with little resolution, since the time of Laplace. These issues can be given
an empirical footing by considering instead the operational question of the observer-dependence of
probabilities as measured. This highlights the relevance of the observer’s observational capabili-
ties, and for understanding what the observer does with the observations, including how they are
reported to third parties, the observer’s inferential capabilities and priors.

Two issues in particular arise in physics and can be carried over into discussions of observations
of complex systems. First is the question of background knowledge, including both knowledge
of preparation procedures and “general” situation-nonspecific knowledge that may be relevant to
“knowing what to look for” in the context of an experiment and hence to the question of defining
BC . If Alice and Bob define BC differently, they will have implicitly and possibly unknowingly
defined their contexts differently.

Example 5.1. Alice and Bob’s question of context

The canonical experimental test for entanglement in physics is the Bell/EPR experiment, involving
two observers (Alice and Bob) and two detectors, generally Stern-Gerlach devices (Bell, 1964;
Mermin, 1993). If Alice and Bob are each observing their respective Stern-Gerlach device and
cannot communicate, they may fail to describe their respective contexts as including a common
state preparation. In the CbD formulism, for instance, this renders their observed outcomes prima
facie stochastically unrelated, and a maximally connected coupling on these unrelated outcomes
is well-defined. If, however, they possess prior knowledge of a common preparation procedure for
a Bell-EPR experiment and include this knowledge in their context descriptions, their outcomes
become physically correlated and their joint probability distribution violates Bell’s inequality and
hence violates the Kolmogorov axioms (Bell, 1964; Mermin, 1993). They may, alternatively, discover
post facto, once they again communicate, that their outcomes are stochastically related (indeed,
supra-classically related) by discovering a maximal coupling as discussed in §4.1 and above. Putting
it another way, in the CbD framework it is the case that Bell’s experiment does not violate the
Kolmogorov axioms once the random variables involved are defined according to the framework. In
this case there is a joint distribution (or coupling) of all random variables, but the coupling cannot
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be chosen such that subcouplings corresponding to connections are identity couplings.‖

This example raises the question of whether Alice and Bob can determine, by observation and/or
classical communication, that they have defined the same context. If they cannot, one is placed in
the position advocated by QBism (Fuchs and Schack, 2013) in which all probability assignments
are strictly perspectival (Mermin, 2019).

The second issue concerns the availability and shareability of reference frames. As discussed
in Bartlett, Rudolph and Spekkens (2007), physically-implemented reference frames such as meter
sticks or clocks, and by extension, all physically-implemented apparatus, encode “non-fungible
information,” i.e. information that can be exchanged only by exchanging a physical system, not
just a bit string. If a “context” is defined by the use of a state-preparation device (e.g. a laser
or a particle accelerator) and a detector, it can be shared, e.g. between distant observers, only
if these physical entities can be shared. Observers themselves, however, also encode non-fungible
information, which without destroying the physical integrity of the observer cannot be shared
(Fields and Marcianò, 2019b). Here again, we are pushed toward a position in which outcomes and
their probabilities are strictly perspectival.

5.3 Signed probability measures

Feynman (1987) once advocated a close connection between what was conceived as “quantum” prob-
ability theory, and the admittance of negative (quasi)probabilities into the standard theory (see
also Baker (1958); Scully, Walther and Schleich (1994)). The inclusion of negative probabilities here
may be approached by assuming that the sets A,B and R of §3 are subsets of a quasiprobability
space P̃ for which the usual Kolmogorov axioms are relaxed to accommodate negative probabilities,
and where conditionals P (A|X) = P (A, |B ×R) are definable. A related approach, apart from the
quantum-theory method of Wigner functions, is to consider for any set Z, the set M(Z) of signed
probability measures (Abramsky and Brandenburger, 2014). In this framework, negative proba-
bilities arise from standard probabilities on signed events, and enable an alternative, systematic
treatment of “no-signalling” models. Since “events” figure in our formulism, we can conveniently
adopt the notion of signed events following Abramsky and Brandenburger (2014).

Consider a set of finitely supported maps m : Z −→ R, satisfying
∑

z∈Z m(z) = 1. Measures
can be extended to subsets W ⊆ Z by (finite) additivity: m(W ) =

∑
w∈W m(w). Let P(Z) ⊂

M(Z) denote the subset of nonnegative real-valued measures; effectively, these become the finitely-
supported probability distributions on Z. Given a function f : Z −→ Y , we define a map

M(f) :M(Z) −→M(Y )

m 7→ [y −→
∑

f(z)=y

m(z)] (5.1)

that pushes forward measures on Z along f to measures on Y . In this way, M will always be a
map between probability distributions, and so let P(f) := M(f)|P(Z). These conditions can be
seen to be functorial:

M(g ◦ f) =M(g) ◦M(f), M(idZ) = idM(Z) (5.2)

and likewise for P(Z). Using signed measures as implementing negative probabilities, the for-
mer can be interpreted as a means of “pushing the minus sign inwards”. This means that basic

‖We thank an anonymous reader for pointing this out.
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“events” are assumed to have some additional information in the form of a sign or “probability
charge”. Crucially, occurrences of the same underlying event of opposite sign cancel, so that nega-
tive probabilities arise from standard probabilities on signed events. The formal description starts
by assigning “±” to relevant objects: given a set E, the signed version E± is taken to be the disjoint
union of two copies of E, expressed as

E± :=
{

(e, ζ) : e ∈ E, ζ ∈ {+,−}
}
. (5.3)

We refer to Abramsky and Brandenburger (2014) for complete details, including probabilistic signed
instruction examples.

6 Basic concepts of Channel Theory

We now introduce an extension of the basic Chu-space formulism that builds in sufficient semantics
to enable a natural representation of inference. This allows us to define a semantically-richer no-
tion of probability that is explicitly process-oriented. Using this notion and the category-theoretic
concepts of limit and colimit (Adámek, Herrlich and Strecker, 2004; Awodey, 2010), we construct a
representation of bidirectional logical constraint flow, i.e. a representation of inference that is simul-
taneously bottom-up and top-down; this is the CCCD mentioned earlier (Fields and Glazebrook,
2019a). We then employ this representation in §7 to reconstruct Hierarchical Bayesian inference in
a contextually-compliant way.

6.1 Classifications and Infomorphisms

For the present purposes, the most important application of Chu spaces is in modeling semantic
(Dretske, 1981) or “pragmatic” (Roederer, 2005) information flow and inference, following the meth-
ods of Barwise and Seligman (1997)(see also Barwise (1997); Seligman (2009)). The fundamental
concept in this case is the idea of a “Classification”, or “classifier” (as we say throughout) relating
“Tokens” to the “Types” that encompass them. We follow the standard notation of Barwise and
Seligman (1997):

Definition 6.1. A classifier A is a triple A = 〈Tok(A),Typ(A),
A〉 where Tok(A) is a set of
“tokens”, Typ(A) is a set of “types”, and 
A is a classification relation between tokens and types:


A⊆ Tok(A)× Typ(A) (6.1)

Example 6.1. First order language

A first order language L is a classifier, where Tok(L) consists of a set M of certain mathematical
structures, and Typ(L) are sentences in L, and M 
 ϕ, if and only if ϕ is true in the token M . The
type set of a token M is the set of all sentences of L true in M , called the theory of M (Barwise
and Seligman, 1997, Ex 2.2, p.28; see Appendix Definition A.1 for a more general treatment of this
last term).

In Channel Theory, Chu transforms become “infomorphisms” which are natural maps between
classifiers (Barwise and Seligman, 1997):
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Definition 6.2. Given two classifiers A = 〈Tok(A),Typ(A),
A〉 and B = 〈Tok(B),Typ(B),
B〉,
an infomorphism f : A → B is a pair of maps

←−
f : Tok(B) → Tok(A) and

−→
f : Typ(A) → Typ(B)

such that ∀b ∈ Tok(B) and ∀a ∈ Typ(A),
←−
f (b) 
A a if and only if b 
B

−→
f (a).

This last condition may be schematically represented by a commutative diagram:

Typ(A)
−→
f // Typ(B)


B

Tok(A)


A

Tok(B)
←−
foo

(6.2)

Intuitively, an infomorphism is a way of transmitting information from one classifier to another,
so that, e.g. “b is type B” can encode, or represent, the information “a is type A”. The relations

A and 
B are explicitly regarded as enforcing semantic, not merely syntactic or set-theoretic
constraints, rendering both classifications and infomorphisms intrinsically semantic notions (to be
elaborated upon in §6.2 below). Thus, “information” here is not simply reduced to a quantity of
bits (as is the case for Shannon information; see e.g. Cover and Thomas (2006)), but it is rather
the set of logical constraints as imposed by Definition 6.2, and thus can be viewed as pragmatic
information as proposed in Roederer (2005).∗∗

Example 6.2. Messages and contents

As a second straightforward example, consider the classification M = 〈Messages, Contents,
M〉
where Messages are classified by their Contents (Allwein, Moskowitz and Chang, 2004), and a
further such classification M′ = 〈Messages′, Contents′,
M′〉. An infomorphism f : M −→ M′

may represent a function decoding messages from M′ to messages in M, so that whatever can be
noted about the translation, may be mapped into something noted in the original message. That
is, mf 
M C if and only if m 
M′ C

f .

The idea of an infomorphism as a mapping between classifiers provides the basic building block
for constructing multi-level, quasi-hierarchical classification systems. Like the connections between
“processing layers” in brains, infomorphisms are intrinsically bidirectional. In contrast to the
superficially-similar treatment of Ehresmann and Vanbremeersch (2007); Ehresmann and Gomez-
Ramirez (2015), infomorphisms here are bidirectional maps between sets of logical relations as will
be specified below.

∗∗Allwein (2004) makes similar remarks when pointing to Barwise and Seligman (1997): “How do remote objects,
situations and events carry information about one another without any substance moving between them?”. The
general qualitative framework of Barwise and Seligman (1997), though not pinpointing specific measures of data flow
within passive messaging, as in the Shannon information case, does nevertheless provide a flow of logical/semantic
reasoning, as noted in e.g. Allo (2009), when the logical constraints of Definition 6.2 lead to structured inference.
Given the premise that information is a physical mode of distinctions and the relationships between them, and
causation is understood as transfer of information, Collier (2011) applies the logical formulism of Channel Theory to
argue that causation itself may be viewed as a form of computation in view of the regular relations in a distributed
system. In consonance, Old and Priss (2001) regard such information flow as a “conceptual” channel between source
and target. Accordingly, each classifier accommodates a “context” in terms of its constituent tokens and types.
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6.2 Information Channels of classifiers

The specifics of transmitting information in Barwise and Seligman (1997) motivates defining an
information channel Chan as a finite indexed family {fi : Ai � C}i∈I of infomorphisms having a
common codomain C, called the core of the channel Chan:

C

A1

f1

==

A2

f2

OO

. . . Ak

fk

cc (6.3)

The core C functions as a carrier of information flow between the fi, and hence between the
component classifiers Ai. Intuitively, the channel can be viewed as a “wire” connecting two agents
(i.e. classifiers) to a “blackboard” or other shared memory via which they can exchange information.
As the shared memory C is itself a classifier, it admits a structure regulating how information is
written to and read from it; for example, it may be a “smart blackboard” that incorporates a
function such as a multi-language translation (Fields and Glazebrook, 2019a). This idea of a
channel core as a shared memory is developed in the setting of interacting channels forming a
distributed system (Barwise and Seligman, 1997), which underlies the following constructions.

Example 6.3. A distributed system

Following Barwise and Seligman (1997, p.89) consider two information channels sharing a com-
mon classifier A2 as below. Suppose the first channel leading to the classifier B1 represents the
examination of a map, and captures the information a person obtains by doing so. The second
channel leading to the classifier B2 represents the informational relationship between the map and
the region it illustrates. These channels are clearly distinct but coupled: the information content
of B1 is related, but far from identical, to that of B2. This coupling can be depicted as:

B1 B2

A1

f1
==

A2

f2
aa

f3
==

A3

f4
aa (6.4)

The sense in which channels encode sets of mutual constraints holding between classifiers is
further elaborated in Barwise and Seligman (1997); Fields and Glazebrook (2019a) where the
classifier concept is extended to that of a local logic, the formal details of which are outlined in the
Appendix (Definition A.4). For now, we can broadly explain this as follows. Intuitively, a classifier
is extended to a local logic by specifying a subset (possibly a singleton) of tokens satisfying all of
the types of some given (regular) theory, as exemplified in Example 6.1, that specifies the logical
aspects of a given situation (see Definitions A.1 and A.2). The theory is regular in so far that
it regulates the structural properties to which the system in question adheres. Accordingly each
local logic incorporates its own regular theory (Definition A.4). The governing rules are expressible
in mathematical (logical) terms with respect to the information flow. Thus an infomorphism can
be extended to a logic infomorphism that preserves this additional structure (Definition A.5).
Intuitively, a local logic “identifies” the token(s) satisfying all of the types, the logic infomorphisms
are those infomorphisms that transfer token-identification information between local logics, and
the channels comprise sets of (logic) infomorphisms encoding mutual constraints that assemble
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multiple identified tokens. The latter may be naturally viewed as “parts” fitted into a larger
identified system (Fields and Glazebrook, 2019b). The logic infomorphisms in principle compose
the class of infomorphisms that will drive the inferential mechanism of the information flow in §7.
The origin of several of the above concepts may be traced back to the logico-philosophical survey
of Barwise and Perry (1983).

6.3 Sequents and conditional probabilities

One of the important concepts connected with a local logic is that of a sequent as discussed more
fully in the Appendix, but we will straightaway formulate this concept in the following:

Definition 6.3. A sequent M 
A N holding of a classifier A is a pair of subsets M,N of Typ(A)
such that ∀ x ∈ Tok(A), x 
A M ⇒ x 
A N .

We observe that a sequent encodes a semantic, e.g. causal constraint that in information flow
functions effectively as a logical gate. To see how classifiers can hence be interpreted as probabilistic,
consider a sequent in A and its satisfaction condition taken to satisfy:

M 
A N ∀x(x 
A M ⇒ x 
A N) (6.5)

As described in Allwein (2004); Allwein, Moskowitz and Chang (2004)(see also Fields and Glaze-
brook (2019a)), to assign a probability to this sequent is to remove the universal quantifier ∀, and
to assign a probability to x 
 N , given that x 
M , for arbitrary x; that is, to assign a probability
that x satisfies N given that it satisfies M . This is a conditional probability that motivates defining:

M 
PA N := P (M |N) (6.6)

This approach is similar to how a conditional probability can be used for interpreting the logical
implication “⇒” as discussed in Adams (1998). Accordingly, when the sequent’s conditional prob-
ability is p, we have M 
pA N , noting that we must have x 
A M in order to apply M 
A N
in a argument. If the probability of the former holding in A is P (M), then x 
A N follows from
the usual rule P (M) ·M 
PA N . Note that 
 is a pre-existing concept, which when interpreted
probabilistically provides a definition of conditional probability. Instead of being “merely” a map
to the real interval [0, 1] as in §2.1, the notion of probability here inherits the semantics associated
with the sequent, e.g. a causal or inferential semantics as discussed above. In Bayesian terms, M
can be regarded as an unobservable event and N an observable quantity, in which case P (M) is a
prior and P (N) is the evidence. Given the likelihood P (N |M), Bayes’ theorem specifies (6.6) as
the posterior:

P (M |N) =
P (N |M)P (M)

P (N)
(6.7)

In Bayesian belief updating (P (N) = 1); in this case, (6.7) is a generative model P (M |N) =
P (N |M)P (M) (recalled in e.g. Kuchling et al. (2019)) that converts a prior to a posterior in each
classifier. Information flow via (logic) infomorphisms between classifiers, with sequents ‘`’ relaxed
at each stage as explained above, provides the necessary semantic consistency for such updating.
Infomorphisms thus capture a significant representation of Bayesian inference with the necessary
coherence, since the “target” classifier (context) admits the same semantics as that of the “source”
within the information flow (cf. McClelland (1998)).
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6.4 Constructing Cone-Cocone Diagrams

As the first step in constructing a CCCD, we define a finite information channel Chan as a finite
indexed family {fi : Ai � C}i∈I of infomorphisms having a common core C as in (6.3). Following
§3 the component classifiers Ai will be taken to characterize a “system of observables”, or some
sub-components thereof.

In the sense of maximally abstract, while preserving the mathematical structure of interest, the
most general channel on a finite set of classifiers corresponds to the category-theoretic notion of a
finite cocone (the prefix “co-” indicating dual, in this case of a cone), with the core C′ the colimit
of all possible upward-going structure-preserving maps from the classifiers Ai (Adámek, Herrlich
and Strecker, 2004; Awodey, 2010). Such a colimit core, provided it exists, can be regarded as
“containing” in its structure, as a classifier, all of the information that is common to the component
classifiers Ai (Fields and Glazebrook, 2019a, provides a detailed construction and examples). The
Cocone Diagram (CCD), as displayed in (6.8) below, must commute, i.e. the rightward arrows
Ai → Aj between the component classifiers must be such that fi = fjgij for all i, j, where gij can
be any composition of arrows Ai → · · · → Aj . This commutativity requirement makes explicit the
role of C′ as a “wire” or shared memory for the component classifiers (Barwise and Seligman, 1997;
Allwein, Yang and Harrison, 2011). It assures inferential coherence by assuring joint activation
of all of the classifiers covered by the cocone core C′, and hence joint, parallel use of all possible
inferential paths through the CCD.

C′

A1

f1

88

g12
// A2

f2

OO

g23
// . . . Ak

fk

gg (6.8)

A commuting finite cone of infomorphisms is the dual construction, in which all the arrows are
reversed. In this case the core of the (dual) channel is the limit of all possible downward-going
structure-preserving maps to the classifiers Ai.

We can now define the central idea of a finite, commuting CCCD as comprising both a cone
and a cocone on a single finite set of classifiers Ai.

C′

A1

f1

88

g12

g21 // A2
oo

f2

OO

g23

g32 // . . . Akoo

fk

gg

D′
h1

ff

h2

OO

hk

77

(6.9)

It is natural to interpret this diagram as depicting a flow of constraint information, represented by
the component classifiers, from D′ through a set of component classifiers to C ′; as noted above,
this “information flow” is inferential in a natural sense. Commutativity here requires that any path
from D′ to C ′, including any number of lateral maps between component classifiers, yields the same
result; this assures that all available inferential paths are brought to bear on the “input” encoded by
D′, and hence assures inferential coherence. The bidirectional maps Ai ↔ Aj between component
classifiers are naturally interpreted as encoding mutual, lateral constraints on the behavior of
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the component classifiers; these are logical constraints imposed by the component classifiers on
each other. The maps fi and hj can be arbitrarily finitely expanded by inserting intermediate
“layers” of additional classifiers, e.g. fi : Ai → C ′ ⇒ fi = fibfia : Ai → Bi → C ′ for some
intermediate classifier Bi; hence a CCCD can have an arbitrary finite number of layers of classifiers.
The structural similarity between CCCDs and recurrent neural network models is obvious. The
formal relationship between a cocone diagram and a general feedforward neural network has been
developed in detail (Kikuchi et al., 2003); reversing the arrows and superposing yields a recurrent
network. As in Appendix §A and §6.3 above, the semantics of the classifiers is inherited. If the
component classifiers represent causal “if – then” relations, the inferences implemented are likewise
causal.

7 Context-compliant Hierarchical Bayesian networks

7.1 Channel Theoretic contextuality

Here we will re-formulate the Chu space A = (A, r,X) and its components Aα in §3 in terms of
classifiers. Thus, with A and X = B ×R as defined in i)-iii) of §3, consider the classifier:

A = 〈A,X,
A〉 (7.1)

where, for now, 
A is an abstract classification which is to be realized below. Taking component
classifiers Aα as in §3 as comprising observables in context, and assuming, without loss of generality,
that these are finitely structured, leads to an information flow:

� Aα+1 � Aα � Aα−1 � · · · (7.2)

The semantic content can be extended by postulating local logics Lα = L(Aα) generated by the
corresponding classifiers Aα, as pointed out in §6.2, and specified formally in Definition A.4 et seq.
This particular formulation is assumed, in principle, to be in relationship to a (regular) theory
associated to the individual Aα (Definition A.2). Accordingly, a flow of logic infomorphisms:

· · ·� Lα+1 � Lα � Lα−1 � · · · (7.3)

can be postulated, and granted this is the case, we can construct a CCD as in (6.8) that depicts
this flow. Further, on weakening the sequents of the local logic, as described in §6.3, the individual
(abstract) classifications 
Aα are now explicitly realized as conditional probabilities pα(·|·). Hence
with the inclusion of conditionals, the information flow in the CCD now represents an inferential
process. As described in §6.2, the existence constraint on the CCD is, effectively, commutativity.

We are now in a position to give the maps fα and the associated logic L an interpretation,
and to make this all the more specific. Firstly, commutativity requires that branching “upward”
to L along any one of the fα is equivalent to following the whole inferential sequence (7.3) to its
end, and then following the last of the fα to L. The fα are, therefore, shortcuts to reaching L:
“insights” that allow the rest of the inferences in (7.3) to be bypassed. The logic L is the “answer”
to the problem (7.3) addresses: formally, it is the logic that solves the problem in one step. The
probability that the answer is “right” is the product of the probabilities along (7.3). Secondly,
commutativity requires that this overall probability is conserved; hence the probability associated
with each “insight” fα must be the combined probability of the inferential steps it replaces. As in
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the case of constraint flow in §6.2 above, commutativity or equivalently, the existence of a CCD,
enforces inferential coherence. The same clearly applies when the dual objects and maps are added
to construct a CCCD.

7.2 Commutativity requires co-deployable observables

The question raised and deferred at the end of §3 can now be addressed. A context as described
in CbD, and in related theories, that can be represented by elements of the set R in §3, is a
set of observations, or in quantum-theoretic terms, outcomes obtained from a set of “deployed
observables.” In practice, such sets are always finite, and their elements – the “observations” or
“outcomes” themselves – are always encodable as finite bit strings. As discussed in Fields and
Marcianò (2019b), some of these observables encode reference frames that specify both what is
being observed and how it is being observed. A context change is a change in the observables
deployed. The observables deployed within any given context must be co-deployable, i.e. the
operators representing them must mutually commute. Observables in different contexts do not
have to be co-deployable, i.e. their operators need not commute. This lack of commutativity is
often regarded as intrinsically “quantum” but in fact arises even in classical theories when the
necessarily-finite resolution of practical observations is taken into account (Jennings and Leifer,
2016).

Observational outcomes obtained with sets of co-deployable observables admit well-defined prob-
ability distributions; this is guaranteed in quantum theory by the Born Rule and is simply assumed
in classical theories. Observational outcomes obtained in non-overlapping contexts are prima fa-
cie statistically unrelated, though as discussed in §5.2 they may be discovered post facto to be
statistically related. What happens, however, in partially-overlapping contexts? This is the situa-
tion addressed by the contextuality theorems of quantum theory (Bell (1966); Kochen and Specker
(1967); see also e.g. Abramsky and Brandenburger (2011)) and is one motivation for CbD and
other theories of contextuality.

7.3 A Channel Theoretic interpretation of intrinsic contextuality

The formulism of CCDs allows us to formulate this question concerning overlapping contexts with
a diagram. Let A1,A2, . . . B and B, C1, . . . Ck be finite sets of co-deployable observables, as in §7.1,
and let C1 and C2 be the respective cocone cores of the contexts they define. The combined set
A1,A2, . . . B, C1, . . . Ck of observables is co-deployable, in the sense of having a well-defined joint
probability distribution, if and only if a core C and maps φ and ψ exist such that the following
diagram commutes, i.e. is a CCD:

C

C1

φ

77

C2

ψ

gg

A1

f1

88

// A2

f2

OO

// . . . B

fB

gg
gB

77

// C1

g2

OO

// . . . Ck

gk

gg

(7.4)

Failure of commutativity at the diagram level is failure of co-deployability, i.e. failure of commuta-
tivity at the operator level. We summarize matters in the following:
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Definition 7.1. With respect to a diagram of the form (7.4), we say that a set of observables
deployed within any given context are co-deployable if the operators representing them commute.
Otherwise, the observables are non-co-deployable, and the measurement system comprising them
is said to be intrinsically contextual.

The requirement that a CCD exists for any set of co-deployable operators has a straightforward
interpretation in terms of probability distributions, and leads to the following:

Theorem 7.1. With respect to a diagram of the form (7.4), failure of commutativity is equivalent
to the non-existence of a consistent probability distribution across the combined set of observables
{Ai}.

Proof. Without loss of generality, we assume that the CCDs below C1 and C2 encode well-defined
probability distributions as described above. Failure of commutativity in (7.4) then implies either
that φ does not have the combined probability of the horizontal maps from B to Ck, or that ψ
does not have unit probability. Either way, no well-defined probability distribution across the
combined set of observables exists. Conversely, if no probability distribution on the combined set
of observables exists, then the probability of at least one of φ and ψ is undefined and hence the
CCD does not exist.

Example 7.1. Calibration and measurement

A simple example of induced contextuality is provided by the commonplace practice of calibrating
an instrument (Fields, 2018). Let A1 . . .An be a set of classifiers that identify a particular instru-
ment, i.e. distinguish it from other items in a laboratory. Let Mp be an operator, considered as a
classifier, that measures the value of a “pointer” p and let Cp be an operator that calibrates p with
respect to some standard. Clearly Mp and CP in general do not commute, i.e. [Mp, Cp] 6= 0. If we
consider a diagram:

C

C1

φ

55

C2

ψ

hh

A1

f1

66

// A2 . . .

f2

OO

// Mp A1

g1

ii
f1

77

// A2

f2

OO

// . . . Cp

g2

gg

(7.5)

the component cocone core C1 representing the combined operations of identifying the instrument
and measuring the pointer will fail to commute with C2 representing the combined operations
of identifying the instrument and calibrating the pointer. Thus the overall diagram will fail to
commute. In this case, by Theorem 7.1, the probability distribution defined by the maps φ and
ψ is not self consistent; indeed, it violates the Leggett-Garg inequality when measurement and
calibration are viewed as sequential (Fields, 2018).

Example 7.2. System identification and “settings”

We can also consider the complement of the above example, in which contextuality is induced by a
“swap” of one system for another, functionally-equivalent system. Such swaps may be undetected or
undetectable, e.g. if the two systems are indistinguishable with the available system-identification
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operators, except post facto as discussed above (Fields, 2018). Here let A1 . . .An be a set of clas-
sifiers that identify a particular instrument, and B1 . . .Bn be classifiers that identify a numerically
(or “ontologically”) distinct instrument. Let Mp measure the value of the “pointer” p of the first
instrument and let Mq measure the pointer q of the second instrument. Clearly Mp and Mq com-
mute, i.e. [Mp,Mq] = 0, as they are acting on distinct physical degrees of freedom. The relevant
diagram is:

C

C1

φ

55

C2

ψ

hh

A1

f1

66

// A2 . . .

f2

OO

// Mp B1

g1

ii
h1

77

// B2

h2

OO

// . . . Mq

g2

gg

(7.6)

If the “observer” in this case can distinguish the A1 . . .An from the B1 . . .Bn, and hence distinguish
the first instrument from the second, this diagram depicts a straightforward case of direct influence:
using a different instrument, even one of “identical” type and characteristics, can be expected to
yield a different result, or more generally, to yield results with a distinct probability distribution.
If, however, we introduce a no-signalling condition that prevents the observer from distinguishing
the A1 . . .An from the B1 . . .Bn, the context switch goes unnoticed (is indeed not noticeable, by
assumption), and the situation is contextual. No signalling can be implemented here by having
Alice identify the instruments and Bob record the measurement outcomes while preventing com-
munication between the two. A similar situation results if Alice adjusts the “settings” on a single
instrument (e.g. the paired Stern-Gerlach devices in a Bell/EPR experiment) while Bob records
the results, provided the two cannot communicate.

Example 7.3. The “Snow Queen” experiment

The example above illustrates the importance of “signalling” between observers or instances of
observation in distinguishing between direct influences and intrinsic contextuality (cf. §4.2). We can
also consider signalling between two parts of a single observer’s cognitive system. As Cervantes and
Dhzafarov (2018) point out in the analysis of their “Snow Queen” experiment, intrinsic contextuality
results when what appear to be single “concepts” (e.g. ‘kind’ or ‘beautiful’) have different meanings
in different contexts, and these differences in meaning extend beyond those induced by the given
descriptions of the contexts (i.e. beyond what is actually “observed” in each context). Differences in
meaning are, effectively, restrictions on communication: conflicting alternative meanings for a single
word or concept reflect the absence or dysfunction of an error correction system capable of accessing
and resolving the conflict. Differences in meaning between contexts lead to differences between
contexts in what can be inferred or put into practice (e.g. Roederer, 2005). When meanings are
distinct enough between contexts to be mutually incoherent, actions appropriate to one meaning (in
the “Snow Queen” experiment, a meaning of “beautiful” that incorporates emotional characteristics
such as kindness) are inappropriate (given constant goals) to the other (e.g. a meaning of “beautiful”
based entirely on physical features). Hence one does not want to fall in love with the Snow Queen.

We now state a general channel–theoretic version of Example 4.1:
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Corollary 7.1. Let (7.4) represent a measurement system in which, for some i, j, subsets {ai} ⊂ A
of events, and conditions {bj} ⊂ B are measured in every context in R. Assume that diagram (7.4)
fails to commute. Then there exists at least one pair c, c′ of contexts in R with c 6= c′, and at least
one event a ∈ {ai}, and condition b ∈ {bj}, such that p(a|{b, c}) 6= p(a, |{b, c′}).

Proof. Consider the following classifiers in a non-commuting sector of (7.4). Taking a subset of
contexts {ck} ⊂ R, for some k, and a corresponding subset {xjk} = {bj , ck} ⊂ X = B×R, leads to
a component classifier Aijk = 〈{ai}, {xjk},
ijk〉. Let A be the subcomponent of Aijk consisting of
a ∈ {ai}, b ∈ {bj}, c ∈ {ck}, and A′ that consisting of a, b, c′ 6= c. In such a non-commuting sector

Aijk

A

==

A′

aa
(7.7)

Theorem 7.1 implies that there is no definable consistently shared probability distribution in this
sector. In particular, the horizontal dotted line between A and A′ in (7.7), indicating no such
consistent probability distribution exists between these two classifiers, implies the result.

“Intrinsic contextuality” is, in other words, a failure of commutativity; a set of observables
A1,A2, . . . B, C1, . . . Ck exhibits intrinsic contextuality if a cocone does not exist above them. The
component cocones, in this case, those under C1 and C2, are in this case mutually incoherent, i.e.
the corresponding measurement systems fail to be co-deployable. We can think, in this represen-
tation, about the process of incrementally adding to or replacing the observables being deployed
in a given situation. Starting with a coherent set over which a cocone (and hence a CCD) is de-
fined, adding or replacing observables merely changes the definition of the cocone as long as the
new observables are co-deployable with the original ones. The altered set “poses a coherent prob-
lem” for which the new cocone core is the one-step solution. Adding or replacing co-deployable
observables introduces “direct influences” on the probabilities of single-observable outcomes by
changing the problem that the observations are an attempt to solve. Such changes can lead to
interpretative difficulties if the change in problem is not recognized as such, but do not lead to
incoherence. As long as the observables are co-deployable, it is possible to treat all of the variables
in the context as one composite random variable (RCq ), as discussed in (Dzhafarov, Kujala and Cer-
vantes, 2016a; Dzhafarov, Cervantes and Kujala, 2017b) and in §3.1. Introducing non-co-deployable
observables, however, introduces incoherence. This is the situation, for example, in an artificial neu-
ral network (ANN) with an inconsistent weight matrix. This kind of inconsistent scenario would
correspond to an ANN that fell short of a unique answer and instead engaged in parasitic oscil-
lations, or to a categorization network that activated two or more mutually-incoherent categories
depending on what input nodes were active (cf. the “fractured co-regulators” of Ehresmann and
Gomez-Ramirez (2015)). The above approach (including Theorem 7.1) may thus be compared
with the non-consistently connected interpretation of contextuality discussed in §4.1, and with the
non-existence of global sections of a sheaf of certain distributions over a “measurement cover” as
characterizing contextuality and non-locality in Abramsky and Brandenburger (2011). In this re-
spect, the failure of commutativity hypothesized in Theorem 7.1 leading to non-existence of an
overall consistent probability distribution, appears to be compatible with, and indeed to provide a
conceptual underpinning for these more probability-theoretic approaches.
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7.4 A signed CCCD

Let us now return to the space of signed probability measures M(Z) in §5.3, and assume that
A,B,X = B × R are subsets of M(Z). In doing this we obtain a system of signed component
classifiers A±α , where the condition that A,B,X are subsets of M(Z), leads to some scope in how
these arguments can be signed. For instance, A = A± could be signed events, such as those in
§2.6 equipped with a signed probability measures, and 
Aα corresponds to a continuous function
p : A × X −→ [−1, 1]. Much of the above considerations apply, and adapting diagram (6.8), we
arrive at a signed CCD

C±

A±1

f±1

88

g±12

// A±2

f±2

OO

g±23

// . . . A±k

f±k

gg (7.8)

Moreover, (7.8) can be fed into (7.4) to create a signed version of the latter that now houses
negative probabilities, and combining signed (7.4) with its dual yields a signed version of (6.9),
i.e. a signed CCCD. Again relaxing the sequents as in §6.3, we obtain an inferential system of
conditional probabilities, when defined, through a signed information flow. The argument at the
end of §7.1 still applies: the signed probability distribution must be well-defined if the signed
CCD or the signed CCCD is to exist. In particular, Theorem 7.1 and Corollary 7.1 have their
signed counterparts. For instance in quantum correlation studies, involving observables deployed
within a context or with respect to a reference frame, the commutativity or non-commutativity of
signed (7.4) with its negative probability measures would amount to violating the tenets of, e.g.
local deterministic hidden variable models, and hence the Bell inequalities which require classical
probabilities (Fine, 1982). Commutativity of signed (7.4) may be compared with the result of
Abramsky and Brandenburger (2011, 2014) that an empirical model is no-signalling, if and only if
it admits a global sheaf section of distributions over a measurement cover. In this regard, probability
models have local hidden variable realizations with respect to negative probabilities, if and only if
they satisfy no-signalling (Abramsky and Brandenburger, 2011, Th. 5.9).

8 Context-compliant Hierarchical Bayesian inference and contexts
in practice

8.1 The Bayesian picture

Cocones are naturally interpreted as encoding abstraction (Goguen, 1991), or in psychological
terms, categorization by abstracted types. Fields and Glazebrook (2019b) shows how to construct
visual categorization hierarchies, beginning with “object files” representing located, bounded, fea-
tured entities that are visibly distinct from their accompanying backgrounds (Kahneman, Tries-
man and Gibbs (1992); see also Flombaum, Scholl and Santos (2008); Fields (2012)). In the dual,
top-down direction, individual objects encode consistency conditions over abstract categories; a
black cat, for example, demonstrates the consistency of the categories ‘animal’, ‘four-legged thing’,
and ‘black thing’. Indexing a set of object files {Yi} by time allows construction of time-indexed
classifiers Oi,t = 〈{Oi,t}, {Yi},
P 〉, where {Oi,t} is a time-indexed sequence of identified objects
and 
P denotes an empirically determined relation consistent with object permanence (Fields and
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Glazebrook, 2019b). This construction supports the representation of “object tokens” represent-
ing re-identifiable objects with histories, and hence supports the representation of feature change.
Dually, time-extended objects encode consistency conditions on sequences of feature changes.

Fields and Glazebrook (2019b) also introduce an interpretation of cocones as representations
of mereological (i.e. part-whole) inclusion. Mereological hierarchies are logically orthogonal to
abstraction hierarchies and have, curiously, received far less attention in the cognitive neuroscience
literature. As in abstraction hierarchies, lower-level entities serve the dual role of encoding consis-
tency constraints across the higher-level entities that contain them. Employing CCCDs as repre-
sentations of mereological classification enables not just the assembly of parts (e.g. the face, legs,
tail etc. of a cat) into wholes, but also the assembly of objects into scenes and the assembly of
object tokens with histories into sequences of episodic memories.

As discussed in Fields and Glazebrook (2019b), Bayesian brain models represent both type
categorization and mereological assembly as Bayesian inferences regulated by prior probability
distributions. It is standard to view prior probabilities as “downward” constraints that assemble
sets of expected lower-level features; this interpretation of prior probabilities is implemented by
predictive-coding models (e.g. Knill and Pouget, 2004; Bubic, von Cramon and Schubotz, 2010;
Clark, 2013; Friston and Kiebel, 2009). An alternative interpretation is suggested by (7.3) and
the probabilistic interpretation of CCDs: prior probabilities are “shortcuts” that allow “jumping
to the conclusion” of an abstract categorization or mereological assembly, with the implications
for actionability that such conclusions provide. This interpretation points toward the obvious
evolutionary advantage of object- and categorical type-memories: they increase the efficiency of
problem solving (i.e. appropriate action selection) in a dynamic, resource-limited environment.

Within this Bayesian picture, mutually-incoherent cocones lead to incoherent object identifi-
cation, incoherent categorization and/or mereological assembly, and incoherent inferences about
appropriate action. Intrinsic contextuality, in other words, provokes inferential incoherence, as
Examples 7.1, 7.2 and 7.3 illustrate. How can a hierarchical Bayesian classifier cope with intrin-
sic contextuality? Here the definition of a context as what is observed shows both its strength
and its weaknesses. The effects of a context can be better understood, and hence predicted, by
expanding it: embedding it in a larger context by observing more. In the limit, direct influences be-
come predictable, so no longer surprising. A context can, however, only be expanded by deploying
additional co-deployable observables. If not all available observables are co-deployable, mutually-
incoherent contexts and hence intrinsic contextuality will remain. The challenge for a Bayesian
classifier is, then, to be able to recognize when observables are not co-deployable, or equivalently,
when concepts like “beautiful” in the “Snow Queen” experiment (Example 7.3) switch between
mutually-incoherent meanings. Quantum theory formalizes the needed knowledge in Bohr’s notion
of complementarity: observables are complementary whenever their operators do not commute
(Bohr, 1928). Moving beyond a formalized theory, however, is challenging. Observers cannot,
in general, determine by observation what observables they are deploying (Fields and Marcianò,
2019b). “Learning the hard way” by working backwards from outcomes that reveal the effects of
incoherent inferences is the fallback option (again cf. the discussion in §4.2); indeed this is how
complementarity was discovered by physics. Working backwards requires memory, time, and other
resources that can be in short supply in a dynamic environment.
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8.2 Contexts in practice I: The idea of active inference

As Friston (2010, 2013) has emphasized, observation is not a passive process (c.f. enactive cognition,
e.g. Froese and Ziemke, 2009). Observers constantly probe their environments through action,
influenced by hidden states, and time-sensitive policies, when seeking to decrease variational free
energy by modifying environmental states in meeting with their expectations, as to their advantage.
In this respect, active inference may be viewed as a paradigm for contextual learning. Grasping
and moving a coffee cup for an enjoyable sip, is a very simple example.

What actions, however, are appropriate? What actions will reveal aspects of the environment
important for defining and reasoning within a context? What actions will reveal that a context
has changed? Here a context having changed entails, by definition, that the observables deployed
by the observer have changed, generally without the observer’s knowledge or intent. Hence the
question is the one of “working backwards” raised above: what actions will reveal, by their effects,
what observables are in fact being deployed?

Questions like these make little sense for ideally rational observers embedded in fully-transparent
environments, e.g. the perfectly efficient markets of classical decision theory (e.g. Parmigiani and
Inoue, 2009). They arise immediately, however, when the observer is separated from the world
by a Markov Blanket (Friston, 2013; Clark, 2017) or, equivalently, an interface (Hoffman, Singh
and Prakash, 2015) that renders observations conditionally independent from the world, including
the effects of actions. For such an observer, observational outcomes are effectively encoded by
the blanket. These blanket-encoded outcomes are the only information about the environment
that is available. A context change, in this case, is simply the appearance of new observational
outcomes. Nothing principled distinguishes a context change from the evolution of a fixed context.
Consequences of actions on the environment, in particular, are only deducible indirectly from
observations, i.e. consequences of the environment’s action back on the observer, consequences
that may appear only well after the original action and not be associated with it. Here again, the
question of the observer’s memory and inferential resources becomes important. To see this in terms
of the CCCD architecture, in regards to diagrams (7.4)(7.6) say, we note that the bottom level of
classifiers corresponding to those exposed to the world, effectively functions as a Markov blanket.
The bidirectional, physical “measurement” operators corresponding to these classifiers in Fields
and Glazebrook (2020a), which implement both input from and output to the observed “world”
implement active inference with respect to the corresponding Bayesian (i.e. CCD) configuration.

8.3 Contexts in practice II: The Frame Problem

The situation faced by such an observer as above is well known in AI, where it is formulated by the
Frame Problem: the problem of circumscribing what does not change when an action is performed
(McCarthy and Hayes, 1969; Dietrich and Fields, 1996; Shanahan, 2016). Viewed broadly, it is the
problem of circumscribing what is relevant in a situation. As solving the Frame Problem requires, in
effect, checking all facts in a situation to look for changes, it rapidly becomes unsolvable in practice,
except approximately through the use of greedy heuristics, as the domain of action becomes large
(indeed the general case is formally undecidable (Dietrich and Fields, 2020)). The problem of
individual object re-identification over time can be recast as an instance of the Frame Problem
(Fields, 2013b); this problem is only “solved” heuristically. ††

††The Frame Problem has been popularized as a form of Hamlet’s problem: when to stop thinking? It describes
the predicament that Fodor’s hapless robot falls victim to (Dennett, 1984; Shanahan and Baars, 2005)(cf. Fodor
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Heuristic solutions to the Frame Problem assume a coherent context; they assume that what
is observed could, in principle, be expanded to include all that there is to be observed. The
infeasibility of such an expansion with limited resources is the reason heuristics are required.‡‡ In
the presence of intrinsic contextuality, however, this coherence assumption is violated. If there is
intrinsic contextuality, i.e. if some observables are not co-deployable, the current context cannot,
even in principle, be expanded to include everything that is observable. To take a very simple
example, measurement contexts for position observables cannot be extended to include momentum
observables, as these do not commute. Hence values of momentum can only be updated heuristically
following measurements of position. Intrinsic contextuality, therefore, renders the Frame Problem
unsolvable even in “small” domains.

To reconstruct the Frame Problem in our formulism, we introduce the idea of an informationally
unencapsulated process (Shanahan and Baars, 2005) employed in cognitive science and AI. An
informationally unencapsulated process effectively assimilates all information from any source that
is relevant in fact for solving a problem. Such a process is not limited by a priori circumscriptions
of what is relevant, and is taken, at least in principle, to be unlimited by resource availability. As
an informationally unencapsulated process “knows” all relevant consequences of an action, it can
solve the frame problem. The question of interest in then whether such processes exist.

Given some distributed system of information flow as in Example 6.3, one can ask whether
further infomorphisms φ and ψ can be found to complete a cocone as in (7.4). Is it possible, in
other words, to construct a commutative diagram:

?

B1

?

B2

?

A1

f1
==

A2

f2
aa

f3
==

A3

f4
aa

(8.1)

As the colimit classifier C that completes such a diagram captures all of the information from
the underlying classifiers Ai, the completed diagram represents an informationally unencapsulated
process if, but only if, the Ai gather all of the information that is in fact relevant to whatever
problem the distributed system is meant to solve. The conditions that must be met for this to be
the case are given by Theorem 7.1: the colimit exists only if the Ai are co-deployable. Hence we
have:

Corollary 8.1. A distributed information-flow system can be informationally unencapsulated only
in the absence of intrinsic contextuality.

From a practical standpoint, proving the absence of intrinsic contextuality in a domain (in AI
terms, a task environment) requires discovering all of the information that is relevant in fact to

(1983)). The difficulty, of course, is that for any informationally unencapsulated inferential process, no a priori limit
exists to information pertinent to that process.
‡‡At least as far as “heuristic solutions” for humans go, such solutions emerge from the methodology of the massively

parallel, competitively based, distributed system implemented by the GNW architecture (Dehaene and Naccache,
2001; Shanahan and Baars, 2005). Indeed, the GNW can be seen as a mechanism for determining relevance on the
fly.
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solving problems in that domain. Hence the Frame Problem is solvable only if it has already been
solved.

9 Conclusion

“Context” is often used to designate what is neglected when an observation is made or an action
undertaken; “environment” is often used in a similar way. The formalism of a theory such as CbD
challenges us to acknowledge that a context is always there, whether attended to or not. By defining
“context” as whatever is observed, this emphasizes that every aspect of a situation is “context”
for every other aspect. As Dzhafarov, Kujala and Cervantes (2016b) show, most “contextual”
effects in psychology, and by extension, in biology and other sciences of complex systems, are
direct influences of context that become explicable as the context is expanded by including more
observations. However, a core of intrinsic contextuality remains, both in physics where it was first
characterized (Bell, 1966; Kochen and Specker, 1967), and in psychology (Cervantes and Dhzafarov,
2018; Basieva et al., 2019).

Here we have formulated an approach to intrinsic contextuality in general category-theoretic
terms: a set of observations exhibits intrinsic contextuality if no cocone can be constructed over the
observables that produced them. Mutually incoherent cocones over subsets of observables indicate
the inability to impose a mathematically consistent joint probability distribution over the combined
subsets. This reformulation is scale-free and applies to both quantum and classical systems. In a
hierarchical Bayesian setting, intrinsic contextuality leads to mutually-incoherent classifications and
hence mutually-incoherent inferential paths. In the presence of intrinsic contextuality, indicated
by non-co-deployable operators as in Definition 7.1, the Frame Problem becomes unsolvable in
principle even in “small” domains.

The current work raises a number of questions and open problems. The first, already posed
forcefully by Basieva et al. (2019), is the further exploration of intrinsic contextuality in humans
by standard experimental means. A second, however, is the question of how switching between
mutually-incoherent contexts is implemented at the neurocognitive level. What attentional pro-
cesses detect the inconsistencies induced by intrinsic contextuality, and how are prior probabilities
updated in response? The existence of complementary observables has perplexed physicists for
decades (Feynman characterized it as “the only mystery” of quantum theory; see Feynman, Leighton
and Sands (1965), Vol. III, §1.1). How are such paradoxes resolved at the implementation level,
if they are, or worked around if they are not? What happens when work-around mechanisms fail?
What is required to detect failure post hoc? An ability to probe this experimentally would begin
to answer the broader question of how “prior probabilities” are represented in memory, and how
different sets of priors can be deployed in different contexts.

A third and broader question is whether intrinsic contextuality can be detected and charac-
terized at multiple scales in complex systems generally. By formulating a scale-free model of con-
textuality in category-theoretic terms, and in particular employing the concepts of classifiers and
information channels, we hope to have opened a new pathway towards addressing these questions
in multiple systems.
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A Appendix: Theories and Local Logics in Channel Theory

In this Appendix we summarize the essential concepts and results pertaining to theories, local
logics, and the logic infomorphisms of Channel Theory, referring to Barwise and Seligman (1997)
for details (see also Fields and Glazebrook (2019a); Seligman (2009)). We commence with some
set Ξ, which could be viewed as set of “types”, with a (binary) consequence relation ` between
subsets of Ξ. A sequent is a pair I = 〈Γ,∆〉 of subsets of Ξ (it is sometimes useful to view Γ and
∆ as sets of situation types). A sequent I = 〈Γ,∆〉 is said to hold of a situation s provided that, if
s supports every type in Γ, then it supports some type in ∆.

Definition A.1. A theory is a pair T = 〈Ξ,`T 〉, where `T is a consequence relation on Ξ. A
constraint of the theory T is a sequent 〈Γ,∆〉 of Ξ for which Γ `T ∆. A a sequent 〈Γ,∆〉 is said to
be T -consistent if Γ 0T ∆.

Example A.1. A simple example illustrates this principle. Suppose Ξ is the set of polynomials in
two variables x, y, and let ` be the consequence relation consisting of sequents 〈Γ,∆〉, such that
each pair (u, v) ∈ R2 satisfying all equations in Γ, satisfies some equation in ∆. For instance, a
constraint of the theory might be x2 + y2 = 25, 3x = 4y ` x = ±4 (Barwise and Seligman, 1997,
Ex 9.2, p.118).

In practice, conceiving some aspects of a situation, either causally requiring or merely causally
allowing other aspects of a situation, makes the above definition clear.

Every classifier has a theory associated with it in the following way (see Barwise and Seligman
(1997, Prop 9.5)).

Definition A.2. A theory Th(A) = (ΣA,`A) generated by a classification A, is one that satisfies
for all types α and all sets Γ,Γ′,∆,∆′,Σ′,Σ0,Σ1 of types:

(1) Identity : α ` α.

(2) Weakening : If Γ ` ∆, then Γ,Γ′ ` ∆,∆′.

(3) Global cut : If Γ,Σ0 ` ∆,Σ1, for each partition 〈Σ0,Σ1〉 of Σ, then Γ ` ∆.

More generally, any theory T = 〈Σ,`T 〉 is said to be regular if it satisfies the above three conditions.

Similar to how classifiers admit infomorphisms, theories have their own notion of morphism,
namely, a “theory interpretation” (Barwise and Seligman, 1997, §9.4). Given a theory T , let Typ(T)
be its set of types, and `T its consequence relation.

Definition A.3. A (regular) theory interpretation f : T1 −→ T2 is a function from Typ(T1) to
Typ(T2), such that for each Γ,∆ ⊆ Typ(T1), if Γ `T1 ∆, then f [Γ] `T2 f [∆] (here “f [ ]” denotes
the image of the theory under the function).

Definition A.4. A local logic consists of a triple (L = 〈Tok(L),Typ(L),
L〉,`L,NL) in which we
have:

(1) a classifier L = 〈Tok(L),Typ(L),
L〉,

(2) a regular theory Th(L) = (Typ(L),`L), and
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(3) a subset NL ⊂ Tok(L), called the normal tokens of L, which are tokens that satisfy all of the
constraints of the theory Th(L) in (2).

For any classifier A there is the natural local logic Lg(A) generated by A: it has classifier A, a
regular theory Th(A) = (Typ(A),`A), and all of its tokens are normal. For any local logic L on A,
we have L = Lg(A) by Barwise and Seligman (1997, Prop. 12.7). Intuitively, a local logic is “local”
to the classifier that generates it. Infomorphisms allow mapping the local logic of one classifier to
that of another; hence we can think of channels as supporting the flow of locally-defined logical
relations between classifiers. In Fields and Glazebrook (2019a) it was noted that any classifier can
be interpreted as defining a coarse-graining, and hence a “scale” at which information is being
organized and represented. Thus each local logic can be thought of as a logic at some level of
description.

In Barwise (1997), L is called an information context and ` is a binary relation relating sets
of situation types. In this case NL is said to be a set of normal situations. Intuitively, these are
the situations that the available information concerns. They may comprise all, or only some of the
situations satisfying the information. For instance, we may start with some set of normal situations
accounting for an individual’s experiences to date, and then the information context consists of all
the sequents satisfied by, i.e. consistent with, this experience. Stepping outside of the context
generates “surprise” in the sense of expectation violation (c.f. Friston (2010)). These observations
lead to asking to what extent an infomorphism between classifiers (denoted Cl) will respect their
respective local logics. This is specified by the following (Barwise and Seligman (1997, 12.3)):

Definition A.5. A logic infomorphism f : L1 � L2, consists of a covariant pair f = 〈f ,̂ f∨〉 of
functions satisfying

(1) f : Cl(L1) � Cl(L2) is an infomorphism of classifiers.

(2) f̂: Th(L1) −→ Th(L2) is a (regular) theory interpretation, and

(3) f∨[NL2 ] −→ NL1 (Comment: the notation is that of Barwise and Seligman (1997, Definition
12.16). The “[ ]” notation is explained in Definition A.3 above. By covariance of f∨, (3) is
equivalent to the pushforward f∨(NL2) ⊆ NL1 .)

Consequences of this definition are outlined in Barwise and Seligman (1997, §12.3) (for an
application of the above concepts to graded consequences and belief, see Dutta, Skowron and
Chakraborty (2019)), but we again emphasize that the flow of information through a network of
logic infomorphisms is naturally interpretable as “inference” in the usual sense. As the classification

 can be considered time- and context-dependent, these inferential processes can be regarded as
having similar dependencies. Note that local logics as defined above, are implemented by classi-
fiers, and not by maps between e.g. neurons (perceptrons), or co-activated functional assemblies
of such. This difference in definition does not rule out the possibility that local logics are them-
selves implemented by co-activated functional assemblies of neurons, that which Ehresmann and
Vanbremeersch (2007) call “cat-neurons.”. Hence they can be considered as logic infomorphisms
(see Fields and Glazebrook (2019a,b) for examples).
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