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Abstract7

Living systems face both environmental complexity and limited access to free-energy re-8

sources. Survival under these conditions requires a control system that can activate, or9

deploy, available perception and action resources in a context specific way. In the accompa-10

nying Part I, we introduced the free-energy principle (FEP) and the idea of active inference11

as Bayesian prediction-error minimization, and show how the control problem arises in ac-12

tive inference systems. We then reviewed classical and quantum formulations of the FEP,13

with the former being the classical limit of the latter. In this Part II, we show that when14

systems are described as executing active inference driven by the FEP, their control flow15

systems can always be represented as tensor networks (TNs). We show how TNs as control16

systems can be implemented within the general framework of quantum topological neural17

networks, and discuss the implications of these results for modeling biological systems at18

multiple scales.19

20

Keywords21
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24

1 Introduction25

The framework of active inference provides a completely general, scale-free formal frame-26

work for describing interactions between physical systems in cognitive terms. In Part I of27

*Corresponding author at: Allen Discovery Center at Tufts University, Medford, MA 02155 USA; E-mail
address: fieldsres@gmail.com
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this paper, we reviewed how active inference – a combination of learning with active explo-28

ration of the environment – emerges in systems compliant with the Free Energy Principle29

(FEP), a general least-action principle initially developed in neuroscience [1, 2, 3, 4, 5, 6, 7].30

We then showed how the control flow problem arises in active inference systems, and re-31

viewed classical and quantum formulations of the problem. Control flow can be represented32

as switching between classical dynamical attractors, between deployed quantum reference33

frames (QRFs) [8, 9], and between computational processes represented by TQFTs [10, 11].34

Implementing control flow has a free-energy cost; hence any control-flow system must trade35

off its own processing costs against the expected benefits of switching between input/ouput36

modes. The time and memory dependence of control flow generically leads to context effects37

on both perception and action.38

In this Part II, we develop a fully-general tensor representation of control flow in §2, and39

prove that this tensor can be factored into a TN if, and only if, the separability (or condi-40

tional statistical independence) conditions needed to identify distinct features of, or objects41

in, the environment are met. We show how TN architectures allows classification of control42

flows, and give two illustrative examples. We then discuss several established relationships43

between TNs and artificial neural network (ANN) architectures in §3, and show how these44

generalize to topological quantum neural networks [11, 12], of which standard deep-learning45

(DL) architectures are a classical limit [13]. Having developed these formal results, we turn46

to implications of these results for biology in §4, and discuss how TN architecture correlates47

with the observational capabilities of the system being modeled, particularly as regards abil-48

ities to detect spatial locality and mereology. We consider how to classify known control49

pathways in terms of TN architecture and how to employ the TN representation of control50

flow in experimental design. We conclude by looking forward to how these FEP-based tools51

can further integrate the physical and life sciences.52
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2 Tensor network representation of control flow53

2.1 Tensor networks and holographic duality54

Entanglement and quantum error correction, two concepts developed in quantum informa-55

tion theory, have been proved to have a fundamental role in unveiling quantum gravity [14].56

At the origin of this consideration is the discovery by Bekenstein and Hawking [15, 16, 17, 18]57

that the second law of thermodynamics can be preserved in the gravitational field of a black58

hole, if this latter has an entropy proportional to the area of its horizon, by the inverse of59

the Newton gravitational constant G. This entropy is maximal, as implied by the second60

law itself, providing an upper bound for possible configurations of matter within a region61

of the same size [19, 20].62

Nonetheless, the scaling of the local degrees of freedom counted by the entropy does not63

increase as the volume, hinging toward the formulation of the holographic conjecture [21],64

suggesting a division between the information that can only be retrieved on the boundary65

world, and a merely apparent bulk world. AdS/CFT realized the holographic conjecture,66

postulating a duality between gravity in asymptotically AdS space and quantum field theory67

on the spatial infinity of the AdS space [22]. Giving literal meaning to the duality, Ryu and68

Takayanagi (RT, [23]) proposed that entanglement of a boundary region fulfils the same law69

as for the black hole entropy, replacing the area of the black hole horizon with an extremal70

surface area that bounds the bulk region under scrutiny.71

While on the boundaries the theory can be individuated by assigning a specific conformal72

field theory (CFT), in the bulk the geometry can be associated to specific entanglement73

structures of the quantum systems. This is, for instance, what happens to the ground74

states of a CFT associated to an AdS space: the RT surface area increases less fast than75

the volume of the boundary. When the boundary is at equilibrium, in a thermal state of76
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finite temperature, the bulk geometry corresponds to that of a black hole, its horizon being77

parallel to the boundary and its size increasing with the temperature. The RT surface is78

then confined between the boundary and the back hole horizon, approaching the boundary79

at higher temperature and increasing its entropy. These considerations suggest the existence80

of a subtle link interconnecting the structure of spacetime and quantum entanglement, and81

hence that a theory of quantum gravity must be fundamentally holographic, where its states82

satisfy the RT formula for some bulk geometry.83

The existence of an exact correspondence between bulk gravity and quantum theory at the84

boundary may hinge toward possible inconsistencies with locality. This has been discussed85

in the literature, in terms of local reconstruction theory [24, 25, 26]: variables in the bulk86

(e.g. bulk spins) can be controlled instantaneously from the boundary, but this requires87

simultaneous access to a large portion of the boundary: locality and an upper speed of88

light do not hold exactly in this theory. Nonetheless, local observers confined in small89

regions at the boundary still fulfill locality and the existence of an upper limit of the speed90

of information exchange, in a way that is reminiscent of quantum error correction codes91

(QECCs) in quantum information theory: information is stored redundantly, in such a way92

that when part of it is corrupted, a reconstruction of information is still possible. Locality93

in the bulk is therefore a QECC property of the encoding map that realizes the duality94

between bulk and boundary. On the other hand, these properties are strictly connected to95

RT, which provides the necessary resource of entanglement for QEEC to emerge [27].96

The RT formula and QECC are properties fulfilled by different classes of models, among97

which TNs [28]. These have been first introduced in condensed matter physics as variational98

wave-functions of strongly correlated systems [29, 30]. TNs are many-body wavefunctions99

that can be derived by composing few-body quantum states, which are indeed tensors. A100

prototype TN is, e.g., a collection of Einstein-Podolsky-Rosen (EPR) entangled pairs of101

qubits: in a nonentangled basis, the measured qubits are in some entangled pure state,102
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and can be composed with additional qubits to create states with increasing complexity.103

Indeed, complicated quantum entanglement can be derived by entangling only a few qubits104

[31].105

Particularly relevant for its implications on the reconstruction of spacetime structure is the106

multi-scale entanglement renormalization ansatz (MERA) [32]. TNs can be naturally re-107

lated to holography duality by considering that their entanglement entropy can be controlled108

by their graph geometry. Some versions of TNs that are characterized by RT entanglement109

entropy and QEEC have been constructed resorting to stabilizer codes [33, 34] and random110

tensors with large bond dimensions [35]. TNs with random tensors at each node can be111

regarded as random states restricted by the topology of the network. Exactly as random112

states are almost maximally entangled, random TNs show, through the RT formula, an113

almost maximal entanglement, providing a large family of states with interesting proper-114

ties to explore holographic duality. Furthermore, for random TNs, the RT formula holds115

in generic spaces with not necessarily hyperbolic geometry, hinging toward an extension116

of holographic duality beyond AdS, to more general configurations in quantum gravity.117

Nonetheless, at least in three dimensions, random tensor networks have been related to the118

gravitational action, by means of the Regge calculus [36].119

On the other hand, since geometry emerges as a specification of the entanglement structure,120

one may consider that the Einstein equations should be connected as well to the dynamics of121

entanglement. For small perturbations around the ground state of a CFT on a boundary,122

linearized Einstein equations have been derived from the RT formula [37, 38]. Indeed,123

the conformal symmetry enables a relationship between the energy-momentum and the124

entanglement entropy, and consequently the area of the extremal surface can be connected125

to the energy-momentum distribution at the boundary – the result is equivalent to the126

linearized Einstein equations.127

The dynamics on the boundary, on the other hand, shows a chaotic behaviour, with scram-128
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bling of the single-particle operators, which evolve into multi-particle operators [39]. Maxi-129

mal chaotic behavior recovered in the growth of the commutator between ladder operators,130

as encoded in the out-of-time-ordered correlation (OTOC) functions, is characterized by131

exponential growth in time and temperature. A model endowed with this property is, e.g.,132

the Sachdev-Ye-Kitaev model, developed to describe certain systems in condensed matter133

physics, such as Gapless spin-fluids [40, 41, 42]. On the other hand, operator scrambling is134

also related to QEEC: the chaotic dynamics at the boundary instantiates QECC preserv-135

ing quantum information, which is efficiently hidden (and protected) behind the horizon.136

Nevertheless, this has led to many questions concerning the information behind the horizon137

being eventually accessible from the boundary though non-local measurements, the fate of138

the local degrees of freedom hitting the singularity, and the relation between the causal139

structure of the bulk and the smooth geometry across the horizon.140

2.2 General results141

We can now move to prove a general result:142

Theorem 1. A system A exhibits non-trivial control flow if, and only if, its control flow143

can be represented by a TN.144

and examine some of its corollaries. We begin by defining:145

Definition 1. Control flow is trivial if a system deploys only one QRF.146

As any collection of mutually-commuting QRFs can be represented as a single QRF [11, 79],147

any system that deploys only mutually-commuting QRFs exhibits trivial control flow.148

Systems that deploy only a single QRF “do the same thing” regardless of context, and so do149

not qualify as “interesting” in the sense used here. As noted above, no finite physical system150

can measure the entire state of its boundary with a single QRF, so no such system can151
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simultaneously measure and act on its entire context. Any system A that deploys multiple152

QRFs Qi in sequence cannot, as noted in Part I, avoid contextuality due to unobservable153

effects, mediated by the action of HB, of the action of Qi on the state later measured by154

Qj. Every action taken by an “interesting” system, in other words, at least transiently155

increases the VFE at its boundary.156

Consider, then, a system A that deploys multiple, distinct QRFs Q1, Q2, . . . Qn acting on157

its environment B, where n � N = dim(HAB). Classical control flow in A can then be158

represented by a matrix CF = [Pij], where Pij is the probability of the control transition159

Qi → Qj. As noted in Part I, any such transition has an energetic cost, which must be160

paid with free energy sourced from the thermodynamic sector F of the A-B boundary B.161

The matrix CF is a 2-tensor. Theorem 1 states that this tensor can be decomposed into a162

TN. We prove it as follows:163

Proof (Thm. 1). Suppose first that control flow in a system A can be represented by a164

TN. A TN is, by definition, a factorization of a tensor operator into a network of tensor165

operators. This network can be either hierarchical or flat; if it is hierarchical, each layer166

can be considered a flat TN. Hence no generality is lost in considering just the case of167

a flat TN, which is an operator contraction T = . . . TijTjkTkl . . . , where summation on168

shared indices is left implicit. In general, Tjk 6= T Tjk = Tkj, hence these expressions do not169

commute. They therefore represent non-trivial control flow. Conversely, any non-trivial170

control flow can be written, at any fixed scale or level of abstraction, as a linear sequence171

of (in general probabilistic) operators. The fixed order of operators in the sequence can be172

encoded formally by adding “spatial” indices as needed to allow contraction over shared173

indices. Hence any non-trivial control flow at a fixed scale can be written as a flat TN.174

This construction can be repeated at each larger scale to produce a hierarchical TN over a175

collection of “lowest-scale” TNs.176
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We can now examine two corollaries of this result:177

Corollary 1. Decoherent reference sectors exist on a boundary B if and only if control178

flow can be implemented by a TN.179

Proof. Decoherence between sectors requires independently-deployable, non-commuting QRFs.180

This requires a control structure that factors, hence by Theorem 1, it requires a TN. Con-181

versely, a TN factors the control structure, making QRFs independently deployable, which182

renders their sectors decoherent.183

Equivalently, the generative model (GM) implemented by a system [4] factors if, and only184

if, control flow can be implemented by a TN.185

Corollary 2. The TN of any system compliant with the FEP is a decomposition of the186

Identity.187

Proof. The FEP applies to systems with a NESS, and drives such systems to return to (the188

vicinity of) the NESS after any perturbation. Hence at a sufficiently large scale, the TN of189

any such system is a cycle, i.e., a decomposition of the Identity.190

Many standard TN models, e.g., MERAs, assume boundary conditions asymptotically far,191

in numbers of lowest-scale operators, from the region of the network that is of interest.192

Identifying such asymptotic boundary conditions yields a cyclic system.193

Theorem 1, together with its corollaries, provides a natural, formal means of classifying194

systems by their control architectures. At a high level, two characteristics distinguish195

systems with different architectures:196

� Hierarchical depth, which indicates the number of “virtual machine” layers [43] the197

architecture supports. The interfaces between these layers implement coarse-graining,198
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removing from the higher-level representation all dimensions, and hence all informa-199

tion, which is contracted out of the lower-level operators.200

� Number and location of contractions that yield unitary operators, and hence build in201

entanglement between lower-level operators. The natural limit is a MERA, in which202

every pair of lower-level operators is entangled at every hierarchical level [44].203

The control-flow architecture, in turn, specifies the structure of the “layout” of distinguish-204

able sectors on B and hence of detectable features/objects in the environment. Locality on205

B requires a hierarchical TN; detectable entanglement requires a MERA-like TN. Locality206

is required for detectable features/objects to appear to have components with nested de-207

compositions. Any QRF for geometric space, and hence for spacetime, must be hierarchical,208

and must be a MERA if entanglement in space is to be detected. A MERA is required, in209

particular, if the use of coherence between spatially-separated systems as a computational210

or communication resource is detectable.211

To illustrate the classification of systems by hierarchical level, consider the ten-step cyclic212

TN shown in Diagram (1):213

. . .A B J (1)

and its extension to a hierarchy as shown in Diagram (2):214

A B C D E F G H I J

(2)

11



where red, blue, and green colors indicate distinct hierarchical “layers” of tensor contrac-215

tions. We have trained artificial neural networks (ANNs) to execute these TNs as the216

sequences of state transitions shown in Table 1. The first sequence (Dataset 1) is a ten-step217

cycle as shown Diagram (1); the second sequence (Dataset 2) layers the coarse-grained state218

transitions of Diagram (2) onto this ten-step cycle. In Dataset 2, a two-bit tag is used to219

differentiate the “low-level” from the coarse-grained “high-level” cycles. An example state220

state transition from a randomly-generated initial state is shown in Fig. 1; the red-on-green221

bit pattern effectively moves “up” one step on each state-transition cycle.222

Table 1: Datasets used in ANN simulations. Dataset 1 specifies a ten-step cycle223

A → B → . . . → J → A. Dataset 2 specifies this same cycle, with three224

coarse-grained cycles layered on top. The tags (0,0), (0,1), (1,0), and (1,1)225

distinguish the data for the low- and high-level cycles.226

227

228
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Figure 1: Example state transition from Dataset 1.

We trained two ANNs, one to execute each of the control cycles shown in Table 1. The229

networks are each composed of three layers, as illustrated in Fig. 2, with network sizes of230

[10, 50, 10] and [10, 200, 10], respectively, for the input, hidden, and output layers. The231

units in the hidden layer use the rectified linear unit (ReLU) nonlinear activation function232

and the neurons in the output layer use the hyperbolic tangent activation function. The233

network is connected in a feedforward way where a neuron in one layer connects to every234

neuron in the next layer. Since the ANN serves as a switch state controller, we use a training235

scheme, similar to one-class classification [45], where the training data are the only data236

that the network learns to produce. In so doing, the network learns to overfit the training237

data, and any input outside of the designated state-encoding is discarded. The network238

is, therefore, not expected to deviate from the learned pattern. The network learns both239

control regimes with 100% accuracy after training with 3,000 randomly-generated 10-bit240

inputs.241
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Figure 2: Feed-forward network archtecture used to learn the control cycles specified in
Table 1. Each node is connected to every node of the next layer, as shown here for the first
and last nodes only. The labels ‘T’ and ‘T+1’ indicate time steps in the executed control
flow.

In the more realistic case of noisy input data, where binary states can be flipped, the242

Bidirectional Associative Memory (BAM), a minimal two-layer nonlinear feedback network243

[46], is a viable alternative to a shallow feed-forward ANN. The architecure is shown in Fig.244

3. This BAM network learns to associate between the two initial and final states in Table245

1, with similar performance to that of the feed-forward network.246
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Figure 3: Architecture of the Bidirectional Associative Memory (BAM) network employed
here. As in Fig. 2, only the connections of the first and last nodes are shown explicitly.

3 Implementing control flow with TQNNs247

Tensor Networks can be naturally associated to the matrix elements of physical scalar248

products among topological quantum neural networks (TQNNs). Physical scalar products249

encode indeed the dynamics of TQFTs, since they fulfill their constraints of imposing250

flatness of the curvature and gauge invariance. Thus, the matrix elements associated to251

scalar products can be seen as evolution matrix elements for the spin-network states that252

span the Hilbert spaces of TQNNs.253
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3.1 Tensor networks as classifiers for TQNNs254

A notable example is provided by BF theories [47], a class of TQFTs particularly well255

studied in the literature of mathematical physics that enables expressing effective theories256

of particle physics, gravity and condensed matter, and provides as well a general frame-257

work for implementations of models of quantum information and quantum computation,258

machine learning (ML), and neuroscience. These are defined on the principal bundle M of259

a connection A for some internal gauge group G, with algebra g, according to the action260

on a d -dimensional manifold Md:261

S =

∫
Md

Tr[B ∧ F ] , (3)

where B is an ad(g)-valued d-2 -form, F denotes the field-strength of A, which is a 2 -form,262

and the trace Tr is over the internal indices of g, ensuring gauge invariance of the density263

Lagrangian L = Tr[B ∧ F ] of the BF theory.264

Variation with respect to the conjugated variables, the connection A and the B frame-field,265

closing a canonical symplectic structure, provide the equations of motion of the theory [47]:266

F = 0 , dAB = 0 , (4)

which are, respectively, the curvature constraint, imposing the flatness of the connection,267

and the Gauß constraint, imposing invariance under gauge transformations, having denoted268

with dA the covariant derivative with respect to the connection A.269

At the quantum level, the states of the kinematical Hilbert space of the theory, fulfilling270

by construction the Gauß constraint, can be represented in terms of cylindrical functionals271

Cyl, supported on graphs Γ that are unions of segments γi, the end points of which meet272

in nodes n, and with holonomies – elements of the group G – Hγi [A] of the connection A273
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assigned to γi and intertwiner operators – invariant tensor products of representations – vn274

assigned to the nodes n.275

For G = SU(2), spin-networks |Γ, jγ, ιn〉, supported on Γ and labelled by the spin jγ of276

the irreducible representations of the group elements assigned to γ and by the quantum277

intertwiner numbers ιn associated to vn, represent a basis of the kinematical Hilbert space278

of the theory. In terms of functionals of Cyl, one can provide the holonomy representation,279

which is related to the “spin and intertwiner” representation of |Γ, jγ, ιn〉 by means of the280

Peter-Weyl transform. This allows us to decompose the spin-network cylindric functional281

as [48]:282

Ψjγij ,ιni
(hγij) =

(⊗
n

ιn

)
·

⊗
γij

D(jγij )(hγij)

 , (5)

with D(j) are Wigner matrices providing representation matrices of the SU(2) group ele-283

ments.284

The functorial evolution among spin-networks is ensured by the projector operator [11],285

which implements the curvature constraint in the physical scalar product among states, i.e.286

〈in|P |out〉 , with P =

∫
D[N ] exp(ı

∫
Tr[NF ]) . (6)

We may then regard |in〉 as elements of the Hilbert space, and without loss of generality pick287

up those ones resulting from composing tensorially in Cyl k -representations of holonomies.288

We may further denote them as |j1 . . . jk〉, with some ordering prescription to associate289

the topological structure of Γ to the sequence of spin labels. Physically evolving states290

P |in〉 are distinguished from the former ones by labelling them as | ˜j1 · · · jk〉. Similarly, we291

introduce |out〉 as the tensor product of (n-k)-representations of holonomies, and denote292

these states as |i1 . . . in−k〉. Then the matrix elements of 〈in|P |out〉 naturally give rise [27]293
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to an n-tensor, i.e.294

〈i1 . . . in−k| ˜j1 · · · jk〉 = Ti1...in−kj1...jk . (7)

3.2 Geometric RG flow for TQNNs and TNs295

The mathematical structures of TQNNs we summarized in Sec. 3.1 are picturing systems “at296

equilibrium”, for which TQFTs characterize a topological stability that percolates into the297

related transition amplitudes. Nonetheless, it is worth considering as well how stochastic298

noise might interfere with the topological order ensured by TQFTs, and study the role of299

“out-of-equilibrium” physics in the analysis of the evolution of the systems under scrutiny.300

Out-of-equilibrium dynamics is instantiated considering a heat-flow evolution of the funda-301

mental fields of the theory, with respect to a thermal time τ . Typical Langevin equations,302

complemented with stochastic noise, provide through their convergence toward the equa-303

tions of motion of the theory the relaxation toward equilibrium of the field configurations304

representing specific systems [49]. In general, given some fields φσ, with a classical equation305

of motion derived, according to the variational principle δS/δφσ, from an action S over a306

Euclidean manifold M, the associated Langevin equations read:307

∂

∂τ
φσ = − δS

δφσ
+ ησ , (8)

with ησ a stochastic noise term. The theory at equilibrium is characterized by the symme-308

tries of the equations of motion δS/δφσ = 0 that are broken in the transient phase [50];309

these symmetries are consistent with – and in the case of BF theories, actually generated310

by – the theories at equilibrium.311

A prototype of geometric heat-flow was introduced by Hamilton, and then used by Perelman312

to prove the Poincaré conjecture, which goes under the name of Ricci flow. Here the313

gravitational field gµν is the basic configurational space field, while the drift terms are the314
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Einstein equations of motion in the vacuum, which indeed are expressed by requiring that315

the components of the Ricci tensor vanish, i.e. Rµν = 0. The Ricci flow then reads316

ı
∂

∂τ
gµν = −2Rµν , (9)

having considered now a Lorentzian manifold M. The Ricci flow equations can be further317

complemented introducing the Ricci target RT
µν = κ2(Tµν − 1/2gµνT ), expressed in terms318

of the Newton constant G = κ2/(8π) and the energy-momentum tensor of matter Tµν , so319

as to obtain at equilibrium the Einstein equations:320

Rµν −
1

2
gµνR = κ2Tµν , or equivalently Rµν = RT

µν . (10)

The stochastic version of the Ricci flow, with heat equation turning into a Langevin equa-321

tion, has been introduced and deepened in [50] for a generic gravitational system in the322

presence of matter fields, describing an action S for gravity and matter. Moving then from:323

ı
∂

∂τ
gµν = − 1

κ2
δS
δgµν

+ η gµν , (11)

in which a multiplicative noise ηµν = η gµν appears, the Hamiltonian analysis of the stochas-324

tic Ricci flow (SRF) in the Adomian decomposition method (ADM) variables has been325

derived [50].326

An essential by-product of the discussion, from the Ricci flow perspective, is that the327

equilibration trajectories correspond to those of a renormalization group (RG) flow. The328

thermal time τ plays the role of scale parameter that individuates a dimension in the329

bulk, which is out-of-equilibrium. The boundaries are recovered asymptotically in τ , in the330

infrared regime, and are by definition at equilibrium and thus symmetric.331

For a particular class of TQFTs, the BF theories we have introduced in Sec. 3.1 for im-332
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plementing TQNNs and TNs, the geometric RG flow acquire a specific expression as the333

TQFT equivalent of the gravitational Ricci flow [51].334

3.3 TNs as a generalization of the main model architectures in335

ML336

The use of TNs is an emerging topic in the ML community. The integration between the337

two appears quite immediate. A TN structure can be viewed as a ML model in which338

the parameters are properly adjusted to learn the classification of a data set. Yet, as339

Ref. [52] mentions, machine learning can aid, in turn, in determining a factorization of a340

TN approximating a data set. Moreover, TNs are also used to compress the layers of ANN341

architectures, besides a variety of other uses. Tensor networks are becoming more and more342

popular to the extent that they are a powerful tool for representing and manipulating high-343

dimensional data, as in the case of image and video classification tasks in which the data344

are represented as a high-dimensional tensor. High efficiency, flexibility, and ease of use are345

making them a dominant choice for many AI applications. Furthermore, besides being used346

to represent data, TNs can be used to process data by exploiting a number of operators.347

This feature makes them an effective technique for processing data in ML applications.348

As is well known, TNs are particularly well suited for representing quantum many-body349

states in which the dimension of the Hilbert space is exponentially large in the number of350

particles. The corresponding ML approach consists in:351

� Lifting data to exponentially higher spaces;352

� Applying any linear classifier f(x) = W ?Φ(X) to a non-linear space;353

� Compressing the weights by using TNs.354
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The output of the model is a separation of classes that would not be linearly separable in355

a linear space. In particular, the decision function is the overlap of the weight tensor W356

with the feature map tensor Φ as in Fig. 4. The weight tensor W can be approximated by357

the decomposition in Fig. 5.358

Figure 4: Representation of the decision function (see [53]).

Figure 5: Matrix product decomposition (again see [53]).

Regularization and optimization are built as a constructive product of low-order tensors359

while weight compression is performed by using the Matrix Product States (MPS) de-360

composition. If we look at Deep Neural Networks as a piecewise composition of linear361

discriminators (logistic regression functions), then the TN framework appears as a gener-362

alization of the main model architectures found in the ML literature, e.g. Support Vector363

Machines, Kernel models, and Deep Neural Networks.364

The literature concerning the use of tensor theory in traditional ML is becoming large. A365

short review starts with a seminal paper by Stoudenmire and Schwab [54], which demon-366

strated how algorithms for optimizing TNs can be adapted to supervised learning tasks367

by using MPS (tensor trains) to parametrize non-linear kernel learning models. Novikov,368
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Trofimov, and Oseledets [55] have shown how an exponentially large tensor of parameters369

can be represented in a factorized format called Tensor Train (TT), with the consequence370

of obtaining a regularization of the model. van Glasser, Pancotti, and Cirac [56] explored371

the connection between TNs and probabilistic graphical models by introducing the concept372

of a “generalized tensor network architecture” for ML. Ref. [57] then designed a generative373

model, i.e. a traditional machine learning model that learns joint probability distributions374

from data and generates samples according to it, by using MPS. Ref. [58] made use of375

autoregressive MPSs for building an unsupervised learning model that goes beyond proof-376

of-concept by showing performance comparable to standard traditional models. Finally,377

Ref. [59] analyzes the contribution of polynomials of different degrees to the supervised378

learning performance of different architectures.379

4 Implications for biological control systems380

Scale-free biology requires a smooth transition from quantum-like to classical-like behavior.381

Typical representations of metabolic, signal-transduction, and gene-regulatory pathways are382

entirely classical, even though many of their steps involve electron-transfer or other mecha-383

nisms that are acknowledged to require a quantum-theoretic description [60, 61]. As noted384

earlier, free-energy budget considerations suggest that both prokaryotic and eukaryotic cells385

employ quantum coherence as a computational resource [62]. Emerging empirical evidence386

for longer-range entanglement in mammalian brains suggests that large-scale networks may387

also be using quantum coherence as a resource [63]. Control flow models must, therefore,388

support the possibility of quantum computation in biological systems. Hierarchical TNs389

that include unitary components, e.g., MERA-type models, provide this capability.390

In prokaryotes, the primary tasks of control flow are adapting metabolism to available391

resources via metabolite-driven gene regulation [64] and initiating DNA replication and392

22



cell division when conditions are favorable. We can, therefore, expect shallow hierar-393

chies of effectively classical control transitions in these organisms. Eukaryotes, however,394

are characterized by both intracellular compartmentalization and morphological degrees395

of freedom at the whole-cell scale. We have shown previously that the FEP will induce396

“neuromorphic” morphologies – i.e. morphologies that segregate inputs from outputs and397

enable a fan-in/fan-out computational architecture – in any systems with morphological398

degrees of freedom [65]. Such systems can be expected to have deep control hierarchies399

at the cellular level, with hierarchical structure correlating with morphological structure400

in morphologically-complex cells such as neurons [66], and in multicellular assemblages401

at all scales. These distinctions correlate with the orders-of-magnitude increase in classi-402

cal computational power (estimated from total metabolic energy budget) as a function of403

cell-surface area in eukaryotes as compared to prokaryotes [62], as illustrated in Fig. 6.404

As well as managing metabolism and replication, most eukaryotes implement active explo-405

ration of the environment, communication with other systems, and – crucially for cognition406

– the writing and reading of stigmergic memories. Thus we can expect such systems to im-407

plement QRFs for spacetime and for specific kinds of objects, e.g., conspecifics and suitable408

substrates for recording stigmergic memories. Such QRFs rely on symmetries, and hence409

on redundancy of encoded (or encodable) information; they depend, in other words, on the410

availability of error-correcting codes [67, 68]. The implementation of spacetime as a QECC411

by TNs has been extensively studied by physicists as noted above; see [69] for review and412

[27] for a detailed analysis using the present formalism. The use of spacetime as an error-413

correcting code by organisms – e.g., the implementation of translational and rotational414

invariance of objects by dorsal visual processing in mammals [70, 71] – is well-understood415

phenomenologically, but the details of neural implementation remain to be elucidated.416
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Figure 6: Power-law relation between maximum classical computation rate (vertical axis)
and cell-surface area (horizontal axis) derived in [62]. Information processing in eukaryotes
is implemented by complex , overlapping signaling pathways that require hierarchical con-
trol, which information processing in prokaryotes is implemented by comparatively simple,
two or three component pathways that require only shallow control systems. Adapted with
permission from [62] Fig. 3.

Both the context-sensitivity of, and the occurence of context effects due to non-commutativity417

of QRFs in, control networks can be expected to increase with their complexity and hier-418

archical depth. “Bowtie” networks with high fan-in/fan-out to/from multi-use proteins or419

second messengers such as Ca2+ are increasingly recognized as ubiquitous in higher eu-420

karyotic cells [72]. Such networks have the general form of the CCCD depicted in Part I,421

Diagram 3. Frequently, such networks evolve via compression of information (e.g. toward422

share second messengers, as in [Ca2+]-based interactions [73, 74]) as an efficiency-increasing423
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mechanism. Bowties introduce semantic ambiguities that must be resolved by context. Each424

incoming signal has its own governing semantics, but the relevant context can depend on425

boundary conditions which can be exceedingly difficult (if not impossible) to predetermine426

(see e.g., [75, 76] for general discussions of the history and semantic depth of this problem).427

As pointed out in [77], a context change x 7→ y is semantically problematic if for a fixed428

set {oi} of observations, the conditional probability distributions P(oi|x) and P(oi|y) are429

well defined, but the joint distribution P(oi|x ∨ y) is not [78]. This occurs whenever the430

QRFs for x and y do not commute [79, Th 7.1]. As suggested by Part I, Diagram 3, this431

context-switching problem affects deep learning using VAEs [80]; see e.g., the application432

to antimicrobial peptides in [81]. In general, the structure of Part I, Diagram 3 can serve as433

a convenient benchmark for distinguishing signal transduction networks that incorporate434

co-deployable versus non-co-deployable QRFs [79].435

“Quantum” context effects due to non-commutativity have, interestingly, been reported436

even at the scale of human language use. The “Snow Queen” experiment [82] challenged437

subjects with distinct, mutually-inconsistent meanings of terms such as ‘kind’, ‘evil’, or438

‘beautiful’ in different contexts, and detected statistically-significant context effects using439

the CbD formalism [83, 84]. Such effects cannot be explained by linguistic ambiguity,440

misreading, etc. Such language-driven contextuality is taken up in the setting of psycholin-441

guistics and distributional semantics in [85], which combines CbD and the sheaf theoretic442

[86, 87] methods to systematically study semantic ambiguity as creating meaning/sense443

discrepancies in statements like “It was about time”, “She had time on her hands to win444

the heat”, “West led with a queen”, etc.445

While the notion of “languages” has thus far been applied to cells, tissues, and even non-446

vertebrates in a mostly metaphorical way, we can speculate that linguistic approaches to447

understanding the interplay between context dependence and semantic ambiguity may be448

useful to biology in general. Immune cells (e.g., T cells) are, for example, “programmed” or449
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“trained” by their progenitor cells to respond to local cellular signals and ambient conditions450

in particular ways. Unexpected context changes may induce dysfunctional (at the organism451

scale) responses, including chronic disorders [88]; these can be considered consequenes of dis-452

crepancies between the “actual” semantics of incoming signals and the semantics expected453

by the immune system’s “language.” This suggestion of possible “linguistic” contextuality454

seems in consonance with the hypothesis of [89] that the immune system is a cognitive (liv-455

ing) system implementing its exclusive system of language-grammar, which may be prone456

to analogous disorders of communication as those discussed in [85]. Similar context effects457

have been observed in microbiological systems [90]; here discrepancies in experimentally458

derived classical probabilities arising from lactose-glucose interference signaling in E. Coli459

can only be explained in terms of non-classical probabilities. We note that the expression460

‘quantum-like’ [91] is often used for such effects; however, their formal structure is exactly461

that given by quantum theory.462

We expect that further research into quantum biology will unfold significant perspectives463

on human/mammalian physiology and cognitive capabilities along the lines suggested in464

the present article. For example, allostatic maintenance, as briefly alluded to in Part I,465

can be seen as a process regulating a body’s physiological conditions relative to costs and466

benefits while dynamically allocating resources for the purpose of overall adaptability of467

an organism within its internal environment. Implementing the allostatic and anticipatory468

mechanisms are the visceromotor cortical regions generating autonomic, hormonal, and469

immunological predictions leading to interoceptive inference [92, 93, 94, 96, 97, 98, 102, 99].470

This process of inference in humans and mammals putatively utilizes predictive coding for471

the processes of homeostasis-allostasis through a hierarchy of cellular to organ-level systems,472

in turn connecting interoception to the processes of extercoception and proprioception473

[92, 99, 100, 101, 102]. The basic principles follow from how allostasis provides protection474

against potential surprise by utilizing a framework somewhat beyond the error signaling475
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necessary for homeostatic maintenance (it is essentially through minimizing the free energy476

of internal state trajectories towards combatting surprise, as discussed in Part I). The477

net effect of the process is consonant with the Good Regulator theorem of [95], showing478

how regulation of a given system requires an internal model of that system. A further479

perspective is to emphasize the predictive nature of an integrated, complex, allostatic-480

interoceptive cortical system capable of supporting a spectrum of psychological phenomena481

including memory and emotions [99] (cf. [102]). Accordingly, cognitive conditions such482

as depression and autism have been described as abnormalities of allostatic-interoceptive483

inference, so impairing predictive coding mechanisms due to aberrant assimilation and484

mistuning of prediction errors (putatively a connectivity issue), conceivably leading to a485

root cause of many known cognitive conditions [92, 100, 102].486

We anticipate that this fully general, context sensitive model of control flow will be im-487

portant for understanding morphogenesis, which is not simply a feed-forward emergent488

system, but rather a highly context-sensitive error-minimizing process [103]. Specifically,489

the collective intelligence of cells during embryonic development, organ regeneration, and490

metamorphosis can create and repair specific complex structures despite a wide range of491

perturbations [104]. Changes in the genome, the number of cells, or the starting configura-492

tion can often be overcome: bisected embryos result in normal twins, amputated salamander493

limbs re-grow back to normal, and planarian fragments result in perfect little worms [105].494

The competency of cellular collectives to reach the correct target morphology despite even495

drastic interventions requires an understanding of how they navigate, via context-sensitive496

control flow, problem spaces including anatomical morphospace [106], physiological, and497

transcriptional spaces [68, 107]. Understanding the navigation policies used by unconven-498

tional collective intelligences can help not only understand creative problem-solving on rapid499

timescales (such as the ability to regulate genes to accommodate an entirely novel stressor500

[108] without evolutionary adaptation), but may also have implications for predicting and501
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managing the goals and behavioral repertoires of synthetic beings [109].502

5 Conclusion503

We have shown here how the problem of defining control flow arises in active inference504

systems, and provided three formal representations of the problem. We have proved that505

control flow in such systems can always be represented by a tensor network, provided506

illustrative examples, and shown how the general formalism of topological quantum neural507

networks can be used to implement a general model of control flow. These results provide508

a general formalism with which to characterize context dependence in active inference509

systems at any scale, from that of macromolecular pathways to that of multi-organism510

communities. They suggest that the concept of communication by language is not just511

metaphorical when applied to biological systems in general, but rather an appropriate and512

productive description of interactional dynamics.513

We view these results as a further step toward fully integrating the formal models, concepts,514

and languages of physics, biology, and cognitive science. This integration is not reductive.515

It rather allows us to classify systems using natural measures of organizational and com-516

putational complexity, and to understand how interactions between simpler systems can517

implement the more complex behavior of the larger systems that they compose.518
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