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Abstract

Chu Spaces and Channel Theory are well established areas of investigation in the general
context of category theory when applied to semantically-based information flow. In this Part I of
a two-part work, we review a range of related concepts and examples showing how these methods
can be applied to logic and computer science, including Formal Concept Analysis, distributed
systems and ontology development. We also discuss spatial coarse-graining in relationship to
information, and in this direction we establish some basic simplicial and categorical techniques
which will supplement the other methods of this Part I when they are applied to characterize
visual object identification and the inference of mereological (i.e. part-whole) complexity in Part
II.
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1 Introduction

Category theory has provided a language and a range of conceptual tools suited to the general
study of complex process as they feature extensively in areas such as computer science, artificial
intelligence, the life sciences, and the study of ontologies (reviewed by Baianu et al., 2006; Ehres-
mann and Vanbremeersch, 2007; Goguen, 2005a,b; Healy and Caudell, 2006; Healy, 2010; Poli, 2001,
2006; Porter, 1994; Rosen, 1986; Spivak and Kent, 2012). This follows a tradition in conceiving of
a range of descriptive methods in philosophy as first advocated by F. Brentano (1981), and then
later by E. Husserl (1970), and others (surveyed by e.g. Simons, 1987; Smith, 2003). The rigorous
mathematical formalism of category theory has its origins in the work of Eilenberg and Mac Lane
(1945); Mac Lane (1971) (see also, e.g. Awodey, 2010).

One particular categorical concept is that of a Chu space, which entered computer science as
a representable model of linear logic originally formulated by Barr (1979, 1991) and Seely (1989).
An advantage of using Chu spaces is their flexibility in adapting to a wide range of interpretations
and applications. They are more general than topological spaces, and they can be represented in
straightforward object-attribute rectangular/matrix-like arrays (the rows consisting of object names,
and the columns consisting of attribute names; so an [ij]-entry simply means that an object oi has an
attribute aj). From the observational perspective, the attributes are taken to provide information
about the structural and dynamical configurations of and between objects (for example, see Hitzler,
Hölldobler and Seda (2004)). Following earlier developments of the theory, Chu spaces emerged
with importance in areas dealing with machine learning and data mining; these include (but are
not limited to) parallel programming algorithms, information retrieval, concurrent computation
automata, physical systems, local logics, formal concept analysis (see below), the semantics of
observation-measurement problems, decision theory, and ontological engineering (Abramsky, 2012;
Allwein, Yang and Harrison, 2011; Barr, 1979; Barwise and Seligman, 1997; Berners-Lee, Hendler
and Lassila, 2001; Pratt, 1995, 1999a,b; Zhang and Shen, 2006). Accordingly, one may find a
variety of interpretations of Chu-space representations, including the object/attribute criteria used
to define informational relationships, depending on the chosen context. ∗

During information processing, the various channels of assimilation may possess intrinsic qual-
ities that influence the type of inferences they derive, regarding the general premise that “X being
A carries the information that Y is B” (Dretske, 1981). As a step towards conceptualizing infor-
mation flow within a logical environment in category-theoretic terms, the basic elements of Chu
spaces have been adapted to the concept of Classifications, as the latter are expressed in terms of
Tokens and Types (Barwise and Seligman, 1997; Barwise, 1997, 1999; Barwise and Perry, 1983).
The resulting framework of Channel Theory casts information flow within a logical and distributed

∗For the reader’s convenience, and to supplement the survey of Chu spaces from the point of view of theory and
applications, we offer the link: http://chu.stanford.edu/guide.html
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systems environment. An infomorphism, as a reformulated Chu morphism (in a sense ‘dual’) con-
stitutes a pivotal concept of Channel Theory, by defining a channel through which the information
represented by one classification is re-represented in another.

We have two broad aims in this two-part work. In this Part I, we survey and assemble the main
concepts and tools of Chu spaces and Channel Theory in a compact integrated form, and briefly
review a scope of techniques and examples. In Part II (Fields and Glazebrook, 2018) we employ
these tools and methods to develop an original category-theoretic description of human visual object
identification, a cognitive process that has been deeply characterized by several decades of exper-
imental and theoretical investigation and that is widely viewed as a model for higher cognition in
general. We focus in particular on the construction of object files (Kahneman, Triesman and Gibbs,
1992) and object tokens (Zimmer and Ecker, 2010) as intermediate representations, the binding of
type and token information in object categorization and identification (Martin, 2007; Fields, 2012;
Keifer and Pulvermüller, 2012), and the recognition and categorization of mereologically-complex
individuals. We show in Part II that the use of category-theoretic methods reveals deep duali-
ties in the visual object identification process that suggest that it can be considered structurally
and functionally scale-free, and advance the hypothesis that human cognition may be scale-free in
general.

Here, we commence by defining and reviewing some of the basic properties of Chu spaces in
§2. Although Chu spaces have been traditionally applied to fields such as those listed above, they
also have a number of other significant applications of interest here. How Chu spaces can be imple-
mented within Formal Concept Analysis and Domain Theory (e.g. to represent information systems
and approximable concepts following Hitzler and Zhang, 2004; Krötzsch, Hitzler and Zhang, 2005;
Scott, 1982; Zhang and Shen, 2006), is reviewed in §3. In §4 we discuss representations of spaces
(and representations by spaces), spatial coarse-graining and finite sampling of information (Gratus
and Porter, 2006; Sorkin, 1991a); we then review the representation of sampled information by
simplicial complexes constructed “above” the sampled space in §5. The following two sections, §6
and §7, establish a similar working account of Channel Theory. We survey a number of motivating
examples and applications, including Distributed Systems (Barwise and Seligman, 1997) in §7.2,
the flow of information in Ontology Comparison and Alignment (Kalfoglou and Schorlemmer, 2004;
Schorlemmer, 2002, 2005) in §7.3, Event Classifications §7.5, State Spaces and Cognizance Classi-
fications (Sakahara and Sato, 2008, 2011) in §7.7. The category-theoretic concepts of cocone and
colimit (e.g. Awodey, 2010) naturally arise in both Chu space and Channel Theory descriptions;
we review these concepts in §8 with illustrative examples. This completes the assembly of the
mathematical foundation to be applied in Part II. We expect that this Part I survey may in itself
be of independent interest to researchers across the AI community.

2 Chu spaces and Chu transforms

2.1 Basic definitions for objects and attributes

Definition 2.1. A (dyadic or two-valued) Chu space C consists of a triple (Co,
C, Ca) where
Co is a set of objects, Ca is a set of attributes, along with a satisfaction relation (or evaluation)

C⊆ Co × Ca.

For observational purposes, we may regard the “attributes” as providing information about
the structural and dynamical configurations of and between the “objects.” Two objects can be
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distinguished if, but only if, there is at least one attribute that they do not share. Otherwise,
objects are said to be equivalent. This sense of equivalence formalizes Leibniz’ principle of “identity
of indiscernibles.” The “objects” and “attributes” can equally well be thought of as “states” and
“events,” with “states” distinguished by the “events” that can occur in them or, as we will see, in
terms of “tokens” and “types” or by other similar pairs of concepts.

Definition 2.2. A morphism or Chu transform of a Chu space C = (Co,
C, Ca) to a Chu space
D = (Do,
D, Da) is a pair of functions (fa, fo) with fo : Co −→ Do, and fa : Da −→ Ca, such that
for any x ∈ Co, and y ∈ Da, we have fo(x) 
D y, if and only if x 
C fa(y).

If C = (Co,
C, Ca) is a Chu space, then C⊥ = (Ca,

op
C , Co) is the dual space of C in which

the roles of objects and attributes are interchanged. This sense of duality allows us to think,
for example, of attributes being distinguished by the objects to which they apply, events being
distinguished by the states in which they participate, or types being distinguished by the tokens
they include. Chu-space duality will provide, in Part II (Fields and Glazebrook, 2018), the key to
representing recurrent networks in a fully-symmetric way.

Generally, for some set K, we have a Chu space C = (Co,
C, Ca) over K, with a satisfaction
relation (evaluation) 
C: Co × Ca −→ K, such that 
C (a, b) is an element of K. This leads to a
convenient matrix representation of a Chu space with entries in K (see the basic examples below).
Note that no structure on K is assumed. The category of Chu spaces over K along with their
morphisms is habitually denoted as Chu(Set,K).

2.2 Chu flows

What is the information preserved when switching between Chu spaces that are tied by a Chu
transform? Let a Chu flow (van Benthem, 2000), cf. Barwise and Seligman (1997) be specified by
a “flow formula” constructed from the elements of the following schema:

x 
 a | ¬(x 
 a) | ∧ | ∨ | ∃x | ∀a. (2.1)

Any such formula ψ(a1, . . . , ak, x1, . . . , xm) specifies which objects xi have which attributes ai
in the Chu space in which it applies. In van Benthem (2000) it was shown that for finite Chu spaces
C and D, the existence of a Chu transform C −→ D is equivalent to every flow formula valid in C
being valid in D as well. The transform C −→ D can, in this case, be viewed as “transporting”
the information encoded in valid flow formulas from C to D; it can thus be thought of informally
as a “channel” from C to D and as implicitly providing a sense of “spatial” and/or “temporal”
separation between C and D. These informal notions will be made more precise in §6.

Example 2.1. A given flow formula ψ(a1, . . . , ak, x1, . . . , xm) can give rise to useful relations
between k attributes (types) and m objects (tokens). For instance on taking a1, a2 as types, and
x1, x2 as tokens, we have (van Benthem, 2000):

∀x(¬a1 ∈ x ∨ a2 ∈ x) ⊂ object inclusion,

∀x(¬a1 ∈ x ∨ ¬a2 ∈ x) � object incompatibility,

∃a(a ∈ x1 ∧ a ∈ x2) o type overlap.
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2.3 Biextensional collapse

Following Pratt (1999a) we define a pair of maps relative to power sets P(·) as follows:

α̂ : Co −→ P(Ca) with α̂(x) = {a ∈ Ca : x 
C a}
ω̂ : Ca −→ P(Co) with ω̂(a) = {x ∈ Co : x 
C a}.

(2.2)

Given X ⊆ Co, and A ⊆ Ca, the above two maps extend to the following maps, respectively Zhang
and Shen (2006):

α : P(Co) −→ P(Ca) with α(X) = {a : ∀x ∈ X x 
C a}
ω : P(Ca) −→ P(Co) with ω(A) = {x : ∀a ∈ A x 
C a}.

(2.3)

A Chu space C is said to be extensional if ω̂ is injective, and separable if α̂ is injective. If C is
both extensional and separable, then let us say it is biextensional. In fact, any Chu space can be
turned into a biextensional type, provided the lack of injectivity of α and ω can be factored out in
a suitable sense. This creates a biextensional collapse of a Chu space C = (Co,
C, Ca), namely the
Chu space

Ĉ = (Ĉo,
Ĉ
, Ĉa) = (α̂(Co),
Ĉ

, ω̂(Ca)), (2.4)

where α̂(x) 

Ĉ
ω̂(a), if and only if x 
C a.

Remark 2.1. Let us explain the above terms with regards to the matrix representation of a Chu
space. ‘Separable’ means that all rows are distinct, and ‘extensional’ means that all columns are
distinct. In the biextensional collapse, any repetitions in the rows of objects (tokens) and columns
of attributes (types) are factored out, thus removing unnecessary repetitions in the content of
information, and hence minimizing the amount of processing units in a given algorithm.

Example 2.2. Consider a topological space (X,U), where X is the set of points, and U is the
set of open sets. Taking 
=∈, and K = 2 = {0, 1}, gives a Chu space (X,∈,U). In the matrix
representation, the space is extensional (no repeated columns). Relative to the set of open sets, the
columns are closed under arbitrary union and finite intersection. Here the relationship is interpreted
as: x 
 U = 1 implies x ∈ U , and x 
 U = 0 implies x /∈ U . In this way the category Top of
topological spaces along with their continuous maps, embeds, in a sense, Top −→ Chu(Set,2).
For further specifics in the topological context, see Pratt (1999a).

Example 2.3. With K = 2 = {0, 1}, take a set (of objects) X = {a, b, c}. This can be represented
as the Chu space



a 0 1 0 1 0 1 0 1
b 0 0 1 1 0 0 1 1
c 0 0 0 0 1 1 1 1

We could take any 8-membered set A (of attributes) to index the columns. As pointed out in
Pratt (1999a, Chap. 1), it is convenient to view the columns as self-identifying, with each column a
function X → K, otherwise expressed as A ⊆ KX . Chu spaces so organized, with 
 understood, are
called normal. So we may just write (X,A) for (X,
, A). For K = 2 this is equivalent to viewing
columns as subsets of X; otherwise said, the characteristic functions of those subsets, with 1’s in
the column as representing members of the subset, and the 0’s non-members.

Suppose we delete three columns from above, so as to obtain
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a 0 1 1 1 1
b 0 0 1 0 1
c 0 0 0 1 1

If we define a ≤ b to be true just when this is the case in every column (as usual by taking 0 ≤ 1),
then we now have b ≤ a and c ≤ a, still three distinct members equipped with a nontrivial order
relation. This relation endows the Chu space with the structure of a partially ordered set, or for
short, a poset, denoted (X,≤). Specifically, for all a, b, c ∈ X, this means: i) a ≤ a (reflexivity); ii)
a ≤ b ≤ a implies a = b (antisymmetry); iii) a ≤ b and b ≤ c implies a ≤ c (transitivity). Such a
poset structure on a Chu space will later show up in §4.1 and §4.2.

Remark 2.2. In the following sections we will present some further examples and applications of
Chu spaces. This will be especially the case in §6 and §7 when we outline the Channel Theory
formulation of Chu spaces.

3 Formal Concept Analysis and Computation in Chu spaces

Category theory can be viewed as a unified language for handling conceptual complexities in both
mathematics and computer science. Chu spaces and Chu flows provide a natural way of representing
both the structure and processing of information and have been used to investigate the semantic
foundations and design of data structures and programming languages. The examples that follow
illustrate these applications and introduce concepts that will prove useful later.

3.1 Concept lattices and approximable concepts

Formal Concept Analysis (FCA) is an approach to the semantics of symbolic data structures that
studies the clustering of attributes into partially ordered sets that give rise to a concept lattice (Gan-
ter, Wille and Franzke, 1999). Domain Theory (DT) for programming languages is concerned with
higher-order relations between concepts that involve partial information and successive approxi-
mation, and with the question of when information can be approximated by finitely representable
approximable concepts (Zhang and Shen, 2006) (cf. formal contexts described in Hitzler and Zhang
(2004)). A central idea of FCA is the distinction between the ‘extension’ of a concept as consisting
of all objects belonging to that concept, and the ‘intension’ of the concept as consisting of all at-
tributes common to all objects belonging to that concept. Defining a concept in FCA thus involves
identifying a collection of attributes which agrees with the ‘intension of the extension’. Note that
the idea of ‘intension’ in FCA captures the philosophical notion of an “essential property” that all
members (here, objects) of a category (here, a concept) must have.

This FCA notion of ‘concept’ has been shown to be intrinsic to a Chu space (Krötzsch, Hitzler
and Zhang, 2005; Zhang and Shen, 2006); indeed each Chu space C = (Co,
C, Ca) has an associated
complete lattice LC of formal concepts associated with C. Zhang and Shen (2006, Th. 4.1) have
further shown that for every complete lattice D of formal (in the sense of FCA) concepts, there is a
Chu space C such that D is order-isomorphic to LC. The following definition(s) then characterize
the differences between ‘formal’ (in the sense of FCA) and ‘approximable’ (in the sense of DT)
concepts.
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Let P,Q be sets, and A ⊆ P(P ), B ⊆ P(Q) (recall that P(·) denotes the power set). Any pair
of functions s : A −→ B, t : B −→ A, is called a Galois connection, if for each X ∈ A and Y ∈ B,
s(X) ⊇ Y if and only if X ⊆ t(Y ). With respect to a Chu space C = (Co,
C, Ca), we recall from
(2.3) the two associated functions (depending on C, so α = αC and ω = ωC ):

α : P(Co) −→ P(Ca) with α(X) = {a : ∀x ∈ X x 
C a}
ω : P(Ca) −→ P(Co) with ω(A) = {x : ∀a ∈ A x 
C a}.

(3.1)

The pair of maps (α, ω) forms such a Galois connection (Ganter, Wille and Franzke, 1999): i)
the set of attribute (object) concepts of P forms a closure system, i.e. a family of subsets closed
under intersection (Caspard and Monjardet, 2003); ii) the attribute (object) concepts of C under
set inclusion form a complete lattice; and, iii) the lattice of attribute concepts, and the lattice of
object concepts are anti-isomorphic to each other. We then have:

Definition 3.1.

(1) A subset A ⊆ Ca is called an (formal) concept (of attributes), if it is a fixed point of α ◦ ω,
i.e. α(ω(A)) = A. Dually, a subset X ⊆ Co is called a (formal) concept (of objects) if it is a
fixed point of ω ◦ α. For each object x ∈ Co, the set of its attributes α{x} is a concept.

(2) A subset A ⊆ Ca is called an approximable concept, if for every finite subset X ⊆ A, we have
α(ω(X)) ⊆ A.

Note that (1) above allows “single-object concepts”; these will become important in Fields and
Glazebrook (2018) as representations of object tokens (cf. (Fields, 2012)), as well as for a hierarchial
iteration of the idea.

Definition 3.2. A complete algebraic lattice (henceforth, an algebraic lattice) is a partial order
which is both a complete lattice and a directed complete partial order (dcpo).

We have now the following basic representation theorem for approximable concepts (Zhang and
Shen, 2006, Th. 6.3):

Theorem 3.1. For any Chu space C = (Co,
C, Ca), the set of its approximable concepts AC under
inclusion forms an algebraic lattice. Conversely, for every algebraic lattice D, there is a Chu space
C = (Co,
C, Ca) such that D is order-isomorphic to AC.

3.2 Chu spaces as information systems

An information system with “states” consisting of finite subsets of tokens selected from some set A
can be defined in terms of an underlying Chu space as follows. Let Fin(A) be the set of finite subsets
of A, and choose a subset Con ⊂ Fin(A) and a relation ` (see Scott, 1982, for details). Interpret the
information states x (i.e. elements of Con) as objects, the tokens a ∈ A as attributes, and let x 
 a
if and only if a is a member of x. In this case, the subset Con on A is called the consistency predicate,
and ` the entailment relation. Following Zhang and Shen (2006), a Chu space C = (Co,
C, Ca) gives
rise to an information system (AC,ConC,`C) via the assignment AC = Ca, X `C a, if a ∈ αC◦ωC(X),
and a consistency predicate ConC for which every subset of Ca is consistent. Zhang and Shen (2006,
Th. 4.6) have shown, for a given Chu space C = (Co,
C, Ca) with Ca finite, a state X ⊂ Ca, taken
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to be a concept, is equivalent to X being a state of the derived information system (AC,ConC,`C).
Intuitively, a Chu morphism in Definition 2.2 correlating the objects and attributes of C to those
of some other Chu space D is a correlation between the respective information systems. Such a
morphism similarly maps sequences of flow formulas valid in C to sequences of flow formulas valid
in D, and hence correlates information processes in the respective information systems.

3.3 Ordered dynamical systems and computation

The stage is now set to develop a general notion of computation for arbitrary dynamical systems
with discrete states. As a sequence of measurements of any arbitrary dynamical system can itself
be considered a dynamical system with discrete states (Fields, 1989), nothing is lost by assuming
discreteness. Artificial neural networks (ANNs) are such systems (Nauck, Klawonn and Kruse,
2003), as are Turing machines, cellular automata, etc.

Consider a quadruple 〈S, ns,≤, T 〉, where S is the state space of an information system as
characterized above, ns is the next-state function, ≤ is a partial order and T : L −→ S is a
mapping where L denotes a propositional (‘factual’) language (Leitgeb, 2005). The map T assigns
some proposition φ of L to each state s ∈ S; hence it represents the (stipulated) semantics of
S. The action of ns, in this case, produces a sequence of propositions φ0, φ1, φ2, ... and so can be
interpreted as (in general, nonmonotonic) inference. If this sequence converges to some stable state
ψ, the action of ns has “halted” and the proposition ψ can be interpreted as the “result” of the
action of ns on φ0. The design perspective in which ns is stipulated and the reverse engineering
or debugging perspective in which ns must be discovered are both clearly supported within this
picture.

Recasting the above in the language of K-valued Chu spaces provides a representation of com-
putations with imprecise inputs, outputs or both. Recalling the attribute symbol 
, let us define{

s 
t φ iff T (φ) = s (precise state information),

s 
 φ iff T (φ) ≤ s (imprecise state information).

The computational interpretation is straightforward: s 
t φ if and only if φ completely specifies the
system state, whereas s 
 φ if and only if the system state is described by φ as well as some other
propositions in L. A computation with an initial state s 
t φ and a final state s′ 
 ψ, for example,
would provide an ambiguous answer (ψ together with other propositions) to a precise question (φ).

This Chu/information space representation of computation has been adapted to capture Bayesian
inference in a connectionist context (Dayan et al., 1995; McClelland, 1998); we develop this rep-
resentation further in Part II (Fields and Glazebrook, 2018). The close relationship between Chu
flows and infomorphisms as defined within Channel Theory (Barwise and Seligman, 1997) and their
application to problems such as ontology alignment are considered in §6 and §7, respectively. In
particular, state space systems will be further described in the context of Channel Theory in §7.5
and §7.7

4 Topology of information and observation

Propositions used to describe the world are semantically related; in the limit, all propositions in
any language form a connected semantic network (Sowa, 2006). Observations or, more precisely,
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finitely-specifiable observational outcomes are similarly related. Considering an information system
to be defined merely over a set of propositions provides no means of capturing such relations. It
is, therefore, useful to introduce additional structure, with the addition of topological structure
a natural first step. Doing this allows a structured notion of sampling the information encoded
in a Chu space, and particularly the idea of a finite sample of attributes (FSA) for an object or
collection of objects.

4.1 The Sorkin perspective

One approach to developing an information topology is via a notion of causality ; this has been
pursued by Sorkin (1991a,b) through the development of causal sets. While the motivation in
this case has been to model the fundamental structure of spacetime in a way that could produce
the continuum of macroscopic geometry as an emergent ‘classical limit’ (see Raptis and Zapatrin,
2001; Sorkin, 1991a,b, for details of the mathematical physics application domain), the techniques
employed are generally applicable to approximating a class of highly structured or idealized spaces
by means of taking a certain limit of less complex, more user-friendly spaces. The point is to
represent non-spatial information in a spatial form as means of ‘visualization’, and to consider
variation in data and observations in the context of such representations. The use of spatial
dimensions as a way of “displaying” information in a meaningful way on both the input and output
sides of connectionist systems (and more generally, ANNs) is an example of this approach. In this
case, the very complex, essentially causal relations between information computed by a learning
algorithm are approximated, on an imposed spatial array of output “units” that have no intrinsic
spatial relationships, in a way that makes them meaningful to external observers (Rogers and
McClelland, 2004, Ch. 8). An input array similarly approximates causal relations in “the world”
when the array geometry is assigned semantic significance, e.g. in computer vision applications.

Fundamental causality relations between objects x, y, z can be expressed in terms of an order
relation ‘≺’:

(1) x ≺ y ≺ z ⇒ x ≺ z (Transitivity: if y is the outcome of z, and x is the outcome of y, then
x is the outcome of z).

(2) x ≺ y and y ≺ x ⇒ x = y (Antisymmetry).

(3) Let [[x, y]] denote the cardinality of the number of elements z between x and y such that
x ≺ z ≺ y, then [[x, y]] <∞ (Discreteness).

These relations can also be expressed in terms of a (locally finite) poset as we do below; we then
apply the inherent sense of causality to the structure provided by Chu spaces. This is achieved
by approximating a highly structured space by a spatial model based on simplicial complexes and
related posets as developed in Gratus and Porter (2006, 2005a,b), which we survey in part here,
and in §5.

4.2 The Sorkin poset PF

Suppose we are given a topological space X, viewed as a space of ‘observables’, and let us observe
X from a finite family of open sets (FFOS) F , not necessarily covering X. This will represent a
set of observations made on X, where objects are observed in relationship to their attributes. In
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this way, the FFOS partitions X into the ‘attributes’, and X can then be regarded as a union of
‘zones’ (see below) in which two points lie in the same zone if they share the very same attributes;
in other words, they consist of clusters of points in the same open set of the FFOS, and thus cannot
be distinguished by the corresponding set of observations.

We can define an equivalence relation “∼F”, by x ∼F x′, if and only if for all U ∈ F , x ∈ U if
and only if x′ ∈ U . Thus two points are equivalent if all the observations from F attribute the same
positive or negative result on both of them. This is simply another way of stating the causality
relations above. We can factor out by this equivalence relation to obtain a quotient mapping:

πF : X −→ XF = X/ ∼F (4.1)

where the quotient XF can be regarded as encoding the observational data on X in a way that
organizes that data by “merging” equivalent observations.

The space XF has topological type T0
† and corresponds to a poset denoted PF and constructed

as follows. We take [x]F to be the equivalence class of x ∈ X, with [x]F ≤ [y]F if and only if for
every open set U ∈ F , if y ∈ U , then x ∈ U . For practical purposes we consider the family F
as finite, and XF is a finite T0-space. Each point [x]F is contained in a minimal open set U[x] of
XF , and [x]F ≤ [y]F if and only if x ∈ U[y]. The resulting poset PF contains much of the essential
observational (or causal data) on X. Besides organizing that data, this poset will serve as a means
of ‘measurement’ (though not point-dependent) for gauging whether ‘objects’ and ‘attributes’ (or,
‘tokens’ and ‘types’) are seen as proximate to each other, or in contrast, are actually very far apart.
Its structure is motivated by the ideas of Sorkin (1991a), as adopted by Gratus and Porter (2006),
describing how certain types of spaces can be approximated by ‘inverse limits’ of more regular
spaces.

Observe that the FFOS F determines a secondary topology τ(F) on X which is just the topology
generated by F . If τ(X) denotes the original topology on X, then τ(F) ⊆ τ(X) with the closure
with respect to τ(F) interpreted as a proximity between ‘zones’ (see below). Let τ(PF ) denote the
quotient topology on PF such that the map

πF : (X, τ(F)) −→ (PF , τ(PF )), (4.2)

is continuous (and then is seen to be an open map). We summarize the nomenclature in the
following:

Definition 4.1. Given X and a FFOS F , we say that the pair (PF , πF ) is a Sorkin model of
X relative to F , in which case PF is called the Sorkin poset for (X,F). Given x ∈ PF , the
corresponding subset π−1

F (x) ⊆ X is called the zone determined by x, which in general will be
neither an open nor closed subset of X.

Definition 4.2. Given two FFOSs F and G of a topological space X, we say that F is a Sorkin
refinement of G if G ⊆ τ(F).

†A topological space X is said to be a T0-space if given distinct points of X, there is an open set of X that contains
one but not the other. T0-spaces naturally give rise to a partial order defined on the set of points of X, where x ≤ y,
if for each open set U ⊆ X, y ∈ U implies x ∈ U , and conversely.
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From Gratus and Porter (2006, Prop. 11) we observe that F is a refinement of G, if and only if there
exists a continuous surjective map πFG : PF −→ PG such that the following diagram commutes

(X, τ(X))

πG ))

πF // (PF , τ(PF ))

πFG
��

(PG , τ(PG))

(4.3)

that is, πG = πFG ◦ πF .

4.3 A Chu FSA

Firstly, we recall the elementary result that any space X along with a FFOS F can be formulated
in terms of a Chu space C = (X,∈,F), such that an object x ∈ X satisfies an attribute U ∈ F , if
x ∈ U (see Example 2.2); hence C is a normal Chu space (Pratt, 1999a). Thinking back to §2.3, we
see that the quotient map πF in (4.2) is simply the universal map to the biextensional collapse of
C = (X,∈,F), and that the Chu space CPF = (F ,∈, τ(PF )) is itself biextensional, observing that
the poset structure on PF is given by

α̂(x) ≤ α̂(y)⇐⇒ ∀a ∈ Ca (y 
C a⇒ x 
C a)⇐⇒ α̂(x) ⊇ α̂(y). (4.4)

To avoid possible complications, we assume, as in (Gratus and Porter, 2006), that F is suitably
‘sampled’ and extensional (that is, F has no repetitive columns). Accordingly, we obtain a Chu
space C = (Co,
C, Ca) consisting of a finite sample of attributes F resulting in a pair (C,F),
entitled a Chu FSA. Given (C,F), we call C|F = (Co,
C,F) the corestriction of (C,F).

4.4 Putting a topology on a Chu space

The next step is to put a topology on a Chu space C. Thus, we commence by saying that C is
topologically closed if the attributes Ca is a topology on objects Co, meaning that C is normal, and
Ca includes all unions and finite intersections. Without too much loss of generality, we assume that
C is biextensional. Thus given C, we have a topologically closed Chu space

τ(C) = (Co,∈, τ(Ca)), (4.5)

which is naturally a topological closure of C. Furthermore, there is a universal Chu morphism
τ : τ(C) −→ C, with τo : Co −→ Co the identity, and τa : Ca −→ τ(Ca) the inclusion. The point
here is that τ(C) contains the same informational (or observational) structure as the original C, and
in τ(C) the information has been encoded by means of the propositional operations of geometric
logic, and sampled via F ⊂ Ca. Hence, as proposed by Gratus and Porter (2006, 2005b), a Sorkin
model CF for (C,F) is defined to be the biextensional collapse\Sorkin poset of C|F . Gratus and
Porter (2006, Prop. 18) have also shown that any row x in CF consists of n entries 0 or 1, and thus
corresponds to a flow formula (§2.2):

(x 
 ai1) ∧ · · · ∧ (x 
 aik) ∧ ¬(x 
 aik+1
) ∧ · · · ∧ ¬(x 
 ain), (4.6)

in turn showing that the rows of CF can be considered to encode the elementary flow formulae:

∃x(
∧
i∈F1

(x 
 ai) ∧
∧
i∈F2

¬(x 
 ai)), (4.7)
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for given partitions (F1,F2) of F .
Given Chu spaces C = (Co,
C, Ca) and D = (Do,
D, Da), we say that C is a Sorkin refinement

of D if there exists a Chu transform φ : τ(C) −→ D, which is the identity on objects (φo(x) = x).
Further, any Chu space is a Sorkin refinement of itself, the Sorkin refinement is transitive, and if C
is both extensional and a Sorkin refinement of D, then the map φ is uniquely determined (Gratus
and Porter, 2006, Prop. 20).

5 Introducing simplicial methods on Chu spaces

Given a topology on an information space, algebraic methods can be used to extend the topology
into a geometry. The resulting (discrete) geometry provides a natural representation of sets of
observations made at different resolutions or scales, and hence a natural way to represent coarser-
to finer-grained approximations of the topology. Such approximations will provide, in Fields and
Glazebrook (2018, §4), the basis for a mereotopology of “parts” of objects.

5.1 Simplicial complexes: basic definitions

We first introduce simplicial complexes as representations of observational data, following Cordier
and Porter (1989); Friedman (2012); Goerss and Jardine (1999) and Spanier (1966).

Definition 5.1. A simplicial complex K consists of a set K0 of objects called the vertices and a
set of finite, non-empty subsets of K0 called the simplices. The latter satisfy the condition that if
σ ⊂ K0 is a simplex, and if τ ⊂ σ (with τ 6= ∅), then τ is also a simplex. Simplicial complexes are
objects in a category denoted Simpl.

Simplicial complexes over an information space provide the structure needed to define an informa-
tion geometry. To each simplicial complex K is associated the polyhedron or geometric realization
of K, denoted |K|, formed from the set of all functions K0 −→ [0, 1] satisfying:

i) if α ∈ |K|, then the set {v ∈ K0 : α(v) 6= 0} is a simplex of K;

ii)
∑

v∈K0
α(v) = 1.

Here each function α can be thought of as “picking out” a subset of vertices to be the vertices of
some particular polyhedron. These functions are normalized so that they “pick out” each vertex
to the same extent.

For any simplex s ∈ K, there is an associated set |s| = {α ∈ |K| : α(v) 6= 0 ⇒ v ∈ s} as well
as a set 〈s〉 = {α ∈ |K| : α(v) 6= 0⇔ v ∈ s}. Often α(v) is called the vth barycentric coordinate of
α, and the mapping |K| −→ [0, 1] defined by pv(α) = α(v) is the vth barycentric projection of α.
With these coordinates, a metric d can be defined on K as given by

d(α, β) =
( ∑
v∈K0

(pv(α)− pv(β))2
) 1

2 . (5.1)

This distance d(α, β) measures the number of vertices shared between the polyhedra “picked out”
by α and β, normalized to account for differences in the numbers of vertices of the two polyhedra.
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Definition 5.2. If K and L are two simplicial complexes, a simplicial mapping f : K −→ L is a
map f0 : K0 −→ L0 of vertex sets that preserves simplices, meaning that if σ ⊂ K0 is a simplex of
K, then its image f(σ) ⊂ L0 is a simplex of L.

Any simplicial complex K gives rise, in a straightforward way, to a poset, namely the poset of
its “faces.” The elements of this poset are the simplices of K, arranged according to the rule σ ≤ ρ
if σ is a face of ρ, that is, if σ ⊆ ρ as subsets of the vertex set K0. Note that unions of “adjoining”
faces are faces with this definition. We will tacitly employ the (contravariant) functor relating the
categories Simpl −→ Sets to speak of a simplicial set corresponding to its underlying structure as
a simplicial complex.

5.2 Simplicial homotopy

Two simplicial maps f, g : X −→ Y of simplicial sets X,Y are said to be homotopic if there exists
a simplicial map H : X × I −→ Y (here I = [0, 1] the closed unit interval) such that H|X×{0} = g,
and H|X×{1} = f . In other words, we have g = H ◦ i0, and f = H ◦ i1, with respect to inclusion
maps i0 : X × {0} ↪→ X × I, and i1 : X × {1} ↪→ X × I. This is summarized by the following
commutative diagram

X × {1}

i1
��

f

((
X × I H // Y

X × {0}

i0

OO

g

66

(5.2)

so that we have H(x, 0) = f(x) and H(x, 1) = g(x).‡

5.3 The nerve of a relation

For a space X and open cover F of X, the Čech nerve N(F) of F is defined as the simplicial
complex whose vertices are the (open) sets in F and for which {U0, . . . , Un} is an n-simplex of
N(F) if and only if

⋂n
i=0 Ui 6= ∅. Intuitively, the Čech nerve is the simplicial complex over F

comprising only connected simplices. As pointed out by Gratus and Porter (2006), the face poset
PF as defined above bears a close relation with N(F), but they need not be identified. In a dual
sense, there is the Vietoris complex V (F) of (X,F) in which the vertices are simply the points
of X, and 〈x0, . . . , xn〉 is an n-simplex if there exists a U ∈ F that contains them all, that is,
{x0, . . . , xn} ⊆ U .

Dowker (1952) provides an abstraction in this setting, given a relation R ⊆ X × Y from X to
Y . A simplicial complex KR, called the nerve of the relation can be specified by: i) the vertices
of KR are those elements x ∈ X for which there exists a y such that (x, y) ∈ R, and ii) the set
{x0, . . . , xn} ∈ X is an n-simplex if and only if there exists some y such that (xi, y) ∈ R, for
0 ≤ i ≤ n. From this it can be deduced that N(F) and V (F) each provide the same information
about the open cover F up to homotopy.

‡We adopt this natural definition of a simplicial homotopy as found in Friedman (2012); Goerss and Jardine
(1999). In Friedman (2012) it is compared with the traditional, more technically oriented definition as seen in other
textbooks on the subject.
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Example 5.1. Let us exemplify some of these concepts for the basic case of the circle S1, following
Porter (2002). Here we take an open covering F = {U1, U2, U3}, relative to polar coordinates, with

U1 =
(
− 2π

3
,
2π

3

)
;

U2 = “
(
0,−2π

3

)
” i.e.

(
0, π
]
∪
(
− π,−2π

3

)
;

U3 = “
(2π

3
, 0
)
” i.e.

(2π

3
, π
]
∪
(
− π, 0

)
.

(5.3)

Every point of S1, with the exception of 0, 2π
3 and −2π

3 , is in exactly two of these, with a total of six
equivalence classes. Choosing three representatives for the non-singleton classes gives the following
minimal open sets:

U0 = U1, U 2π
3

= U2, U− 2π
3

= U3

Uπ
3

= U1 ∩ U2 := U12, U−π
3

= U1 ∩ U3 := U13, Uπ = U2 ∩ U3 := U23.

Now we have a partially ordered set with associated Hasse diagram

1 2 3

12 23 13

(5.4)

showing that S1
F has 6 points, and the homotopy type of the former is that of S1.

If we set X = S1 and take the open cover F = {U1, U2, U3} as above, the vertices of N(F) =
〈U1〉, 〈U2〉, 〈U3〉, and the 1-simplices of N(F) = 〈U1, U2〉, 〈U1, U3〉, 〈U2, U3〉. Thus, N(F) may be
represented schematically by the diagram

2

1

1,2

1,3
3

2,3

(5.5)

Recalling that any simplicial complex determines a poset by subset inclusion of simplices, it can be
seen that the resulting poset is the opposite of that representing XF .

5.4 The Čech and Vietoris nerves of a Chu space

In the context of a Chu space C = (Co,
C, Ca), the Čech nerve is the simplicial complex denoted
N(C) with vertex set Ca and where a (non-empty) subset {a0, . . . ap} of Ca is a p-simplex if there is
an object x ∈ Co satisfying x 
C ai, for 0 ≤ i ≤ p. This is motivated by the fundamental principle
that for simplicial complexes, the nerve can be viewed as a set of instructions serving to construct
(an approximation of) a space by fitting together the individual geometric simplicies.§ At the same
time, the associated Vietoris nerve V (C) is, in this context, the Čech nerve of the dual space C⊥.
Given that some {a0, . . . ap} comprises a simplex, the latter can be symbolized as 〈a0, . . . ap〉.
§The nerve specifies, in effect, which simplices adjoin each other by “sharing an edge.” Porter (2002) provides a

number of illustrative examples providing an intuition leading to the discussion in Gratus and Porter (2006).
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As pointed out by Gratus and Porter (2006, §3) there may be possible complications in dealing
with induced Chu morphisms, since the set Ca may be infinitely large. To remedy this situation, it
is necessary to finitely sample the attributes by restricting consideration to a subset F of Ca. Thus
following Gratus and Porter (2006, Prop. 4), if f = (fo, fa) : P = (Po,
P , Pa) −→ Q = (Qo,
Q
, Qa) is a morphism of Chu spaces, and F is an open cover (the observations) representing a finite
sample of the attributes of Q, i.e we have F ⊆ Qa and finite, then there is an induced map

f = (fo, fa) : P = (Po,
P , fa(F)) −→ Q = (Qo,
Q,F). (5.6)

Furthermore, there are also induced simplicial maps given as follows: firstly, with respect to the
Vietoris nerve, we have

V (f) : V (Po,
P , fa(F)) −→ V (Qo,
Q,F), (5.7)

given by V (f)〈p0, . . . , pn〉 = 〈fo(p0), . . . , fo(pn)〉, and secondly, for any choice of splitting, the
function fa : F −→ fa(F) (recall F ⊆ Qa) induces a simplicial map with respect to the Čech nerve

N(f) : N(Po,
P , fa(F)) −→ N(Qo,
Q, fa(F)), (5.8)

given by N(f)〈fa(q0), . . . , fa(qn)〉 = 〈q0, . . . , qn〉.

5.5 The Chu FSA and induced morphisms between nerves

The above simplicial procedures show that, for any Chu FSA (C,F), there are two associated
simplicial complexes N(C|F ) and V (C|F ), along with the associated posets of their faces. Recall that

we took CF to denote the biextensional collapse\Sorkin poset of C|F . Let F̂ denote a corresponding
family of attributes. Again assuming C|F is extensional (no repeated columns in F) then (Gratus
and Porter, 2006, Th. 21), the quotient map

πF : C|F −→ CF , (5.9)

exists, and there is an induced isomorphism

πNF : N(C,F)
∼=−→ N(C|F , F̂), (5.10)

of simplicial complexes.
Intuitively, representing a set of observations of an FSA of a Chu space by a simplicial complex

renders it a coarse-graining of the underlying Chu space, with the “grain size” determined by
the number of vertices in the Čech nerve. The adjacency relations implicit in the Čech nerve
provide this coarse-graining with a local geometry. This construction thus captures the important
intuitions that 1) observations in practice always have finite resolution, and hence yield finitely-
specifiable outcomes, 2) any coarse-graining can be further coarse-grained by incorporating subsets
of mutually-connected simplices at the finer scale into single simplices at the new coarser scale, and
3) any coarse-graining can be finitely refined by reversing this process. The hierarchy of coarse-
grainings produced becomes, in Fields and Glazebrook (2018), a mereological hierarchy describing
a complex object constructed out of parts that have both adjacency relations and local geometric
relations.
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6 An excursion into Channel Theory I

6.1 Classifications: Tokens and Types

Situation Theory and Channel Theory (Barwise and Seligman, 1997) provide a structure for de-
scribing informational relations in the setting of information flow through systems distributed across
space and time. They provide a conceptual and schematic generalization of the ontological notion
of information as a causal connection introduced by Dretske (1981), i.e. of the intuitive notion
that a state of some system B can encode or carry information about some system A to which it
is coupled by a physical interaction that serves as a channel. An assumption lending realism to
the approach is that the channels through which information flows may have implicit or unknown
properties that alter in some way the information flowing through them. When such alterations are
systematic, they can be considered inferences from input information to output information that
are implemented by the channel. It is important to note that channels conceived of in this way are
interposed between observations (i.e. systems viewed as recording observational outcomes); hence
the inferences implemented by a channel must be inferred by comparing the output with the input.
Channels can thus be identified with elementary gates in either classical or quantum (Nielsen and
Chaung, 2000) computations.

The fundamental concept of Channel Theory is the idea of a classification relating tokens to
the types that encompass them.

Definition 6.1. A classification A = 〈Tok(A),Typ(A),
A〉 consists of a set Tok(A) consisting of
the tokens of A, a set Typ(A) consisting of the types of A, and a classification relation


A⊆ Tok(A)× Typ(A), (6.1)

that classifies tokens to types.

A classification A = 〈Tok(A),Typ(A),
A〉 has the structure of a Chu space, that is, via the
assignment (Tok(A),
A,Typ(A)) 7→ (object,
, attribute) or, as is more typical in Barwise and
Seligman (1997), the ‘dual’ form (Tok(A),
A,Typ(A)) 7→ (attribute,
, object). As will be seen
in §6.5 below, these interpretations are interchangeable. Let us also keep in mind that for Chu
spaces, “objects” and “attributes” can be aptly replaced by terms such as “events” and “states”,
with 
 then interpreted as selecting the events that occur in a given state or, alternatively, the
states participating in a given event.

Remark 6.1. As in §2.1, we can take a classification A = 〈Tok(A),Typ(A),
A〉 over a set K, with
evaluation 
A⊆ Tok(A)× Typ(A) −→ K, where 
A (a, b) is an element of K.

Instances of Chu spaces (such as Example 2.2) conveniently carry over to classifications, and
conversely. In the following, we present some examples that were originally formulated within
Channel Theory.

Example 6.1. Following Allwein, Moskowitz and Chang (2004), let

FOL = 〈Models, Sentences,
FOL〉,

where Sentences are sentences in First Order Logic (FOL). Models are models of FOL sentences,
and x 
FOL S, if and only if x is a model of the sentence S. Here, there are various internal
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relations holding on both the set of sentences and that of models, but none are imposed as external
conditions in this case without further modification. One could also reverse matters, by taking the
Types to be Models, and the Tokens as Sentences, so that Sentences in this case would be classified
by Models.

6.2 Infomorphisms

Here we recall the idea of a Chu morphism in order to link the information between two given
classifications A = 〈Tok(A),Typ(A),
A〉 and B = 〈Tok(B),Typ(B),
B〉. In this case it is useful

to define “switching relations”
−→
f : Typ(A) −→ Typ(B) and

←−
f : Tok(B) −→ Tok(A) that can be

specified by introducing the Channel Theory concept of an infomorphism. Specifically:

Definition 6.2. Given two classificationsA = 〈Tok(A),Typ(A),
A〉 and B = 〈Tok(B),Typ(B),
B
〉, an infomorphism f : A� B, is a pair of contravariant maps

i)
−→
f : Typ(A) −→ Typ(B)

ii)
←−
f : Tok(B) −→ Tok(A)

such that for all b ∈ Tok(B), and for all a ∈ Typ(A), we have

←−
f (b) 
A a, if and only if b 
B

−→
f (a). (6.2)

This last condition may be schematically represented by:

Typ(A)
−→
f // Typ(B)


B

Tok(A)


A

Tok(B)
←−
foo

(6.3)

Note that this definition, given in Barwise and Seligman (1997), employs the ‘dual’ interpre-
tation of types as objects and tokens as attributes. Interpreting tokens as objects and types as
attributes yields infomorphisms with the usual Chu-morphism arrow directions.

Remark 6.2. In the context of situations, ‘attributes’ can be interpreted as statements of ‘situation
types’. In the Dretske spirit, to say that “x is T1” transmits information that “y is T2” can be
represented as an infomorphism representing these classification statements. Here the content of
information such as (T1, T2) is defined as the ‘type’, and the carrier of the respective types, such as
(x, y), is defined as the ‘token’.

Example 6.2. Let M = 〈Messages, Contents,
M〉 where Messages are classified by their Con-
tents (Allwein, Moskowitz and Chang, 2004). Suppose we have another such classification M′ =
〈Messages′, Contents′,
M′〉. An infomorphism f : M −→M′ may represent a function decoding
messages from M′ to messages in M, so that whatever can be noted about the translation, may be
mapped into something noted in the original message. That is, mf 
M C ⇔ m 
M′ C

f .
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Example 6.3. Here is an example from Decision Theory (Allwein, Yang and Harrison, 2011, §2.3).
Let S be a classification of propositional logic and its model states, and let f represent a decision
which evaluates a state s and the agent making the decision (e.g. “either walk home, or take the
bus home”). Let O be the classification of outcomes, and let sf represent a particular outcome of
the decision of choosing either option (either “walk home” or “take a bus home”). A proposition,
denoted Q over outcomes (in accordance with a slogan such as “Keeping Fit”) characterizes them.
Let Qf be the proposition categorizing all of the states in which Q is satisfied. Thus, with respect
to the above scheme of infomorphisms, we set the classification A = O, and B = S, and (6.3) thus
leads to

Typ(O)
−→
f // Typ(S)


S

Tok(O)


O

Tok(S)
←−
foo

(6.4)

in which case the infomorphism condition is expressed by s 
S Q
f if and only if sf 
O Q.

Remark 6.3. It is worth noting that in the framework of infomorphisms, there is a natural mapping
between tokens A and the set of informational states:

A −→ S(A). (6.5)

For instance, the truth classification of a first order language L is the classification whose types are
the sentences of L, and the tokens are the L-structures. In which case, the classification relation is
defined by N 
 ϕ, if and only if ϕ is true in the structure of L (see (Barwise and Seligman, 1997,
Example 4.6)).

6.3 Information channels

An information channel Chan consists of an indexed family {fi : Ai � C}i∈I of infomorphisms
having a common codomain C called the core of the channel Chan:

C

A1

f1
==

A2

f2

OO

. . . Ai . . .

fi

ee (6.6)

The core C is essentially a carrier of information flow between the fi and hence between the
classifications Ai, and is itself a classification in the above sense. The tokens Tok(C) of C are
called connections. A connection c is said to connect the tokens fi(c) of the classifications Ai for
i ∈ I (note that tokens are mapped from C to the Ai in the ‘dual’ interpretation of Barwise and
Seligman (1997)). A channel with index set {0, . . . , n− 1} is called an n-ary channel. Composing
information channels amounts to taking their limit and the channels themselves may be refinable
by straightforward categorical means (Barwise and Seligman, 1997).

The above definition extends the intuitive picture of a channel as a wire connecting two agents
(i.e. classifiers) to the idea of a blackboard, or other shared memory, via which multiple classifiers
exchange information. The shared memory C being itself a classifier provides it with a structure
that can affect how information is written to, and read from it; one can imagine, for example, a
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“smart” blackboard that incorporates a function such as multi-language translation. Analogous
conceptualizations will be treated schematically in the descriptive mechanism presented in Part
II. Consistent with the essentially causal notion of information of Dretske (1981), the connections
between the tokens of different classifiers are purely functional; no overarching semantics is assumed.
How such a semantics can be constructed, post hoc, given a channel is discussed in §7.3 below.

6.4 Cocone of infomorphisms

A network of infomorphisms between classifications admits a limit classification that gathers all of
the information in the network into a single classification (a cone) with projections back down to
the individual classifications (Barwise and Seligman, 1997). There is a dual notion which we will
describe as follows. A channel is an instance of the more general category-theoretic concept of a
cocone being the core classification. To motivate the construction, consider any finite directed graph
with vertex labels 1, 2, ..., n and edge labels fij . Considering such a graph to represent a network of
communicating agents is, from a category-theoretic perspective, invoking a map G (technically, a
functor from the category of finite directed graphs to the category of classifications) that constructs
a classification G(i) at each vertex and an infomorphism G(fij) at each edge. A commuting finite
cocone of infomorphisms (e.g. Barwise and Seligman (1997); Allwein, Yang and Harrison (2011))
is a finite network of classifications G(i) and infomorphisms G(fij), a vertex classification C, and
a collection of infomorphisms gi : G(i) −→ C:

C

G(1) . . .

g1

55

G(i)

gi

==

G(fij)
// G(j)

gj

aa

. . . G(n)

gn

ii (6.7)

The commutativity condition is that for all fij , we have gi = gj ◦ G(fij). The base of the cocone
consists of the classifications and infomorphisms constructed by G; the cocone vertex classification
C together with the maps gi, is a channel. Note that in the complementary sense, a commuting
finite cone of infomorphisms consists of a finite network of classifications G(i) and infomorphisms
G(fji), a vertex classification C, and a collection of infomorphisms gi : G(i) −→ C. For all fji, we
have gi = G(fji) ◦ gj , and all arrows in the above diagram are reversed.

In short, we have this colimit classification into which there are infomorphisms from each
constituent classification, and this colimit contains all of the information that is common to the
different component parts of the network. The generalization from channel to cocone will prove
useful in the discussion of “minimal covers” of distributed systems in §7.2. We further characterize
cocones and relate them to colimits in the descriptive discussion of §8. In Part II of this work
(Fields and Glazebrook (2018)) we will apply these concepts to model both abstraction-based and
mereological categorization as well as the process of tracking individual category members through
time as both their features and their contexts of observation change.

6.5 The flip of a classification

For any classification A, the flip of A, is the classification A⊥ whose tokens are the types of A,
whose types are the tokens of A, such that α 
A⊥ a if and only if a 
A α (see Barwise and Seligman
(1997, §4.4)). In deciding how to model a classification there may be epistemological questions, e.g.
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the types in question are given as things or attributes we may know about, and the tokens are those
things we wish to have information about. The fact that the flip of a classification is a classification
(and both can be treated as Chu spaces) and these behave well under infomorphisms, means that
a situation involving types or tokens, can be dualized to tokens or types. For instance, “the type
set of a token” dualizes to “the token set of a type”. Effectively, f : A� B is an informorphism if
and only if f⊥ : B⊥ � A⊥ is an infomorphism (Barwise and Seligman, 1997, Prop. 4.19). Further,
(A⊥)⊥ = A with (f⊥)⊥ = f , and (fg)⊥ = g⊥f⊥ (Barwise and Seligman, 1997, Prop. 4.20). Thus
for f, f⊥ respectively, we have the commuting diagrams

Typ(A)
−→
f // Typ(B)


B

Tok(A)


A

Tok(B)
←−
foo

Tok(B)
←−
f // Tok(A)


−1
A

Typ(B)


−1
B

Typ(A)
−→
foo

(6.8)

6.6 The nerve of a classification

As any classification is a Chu space, any operation defined for Chu spaces is meaningful for a
classification. A finite sample F of ‘attributes’, for example, becomes a finite sample of ‘tokens’
(or ‘types’). Simplicial complexes are defined as in §5.1 and nerves as in §5.4. The Čech nerve
of a classification A = 〈Tok(A),Typ(A),
A〉, for example, is the simplicial complex N(A) with
vertex set Tok(A), where a (non-empty) subset {b0, . . . bp} of Tok(A) is a p-simplex if there is a
type v ∈ Typ(A) satisfying v 
A bi, for 0 ≤ i ≤ p. The notion of the Vietoris nerve follows in a
similar way as in §5.4.

If F = Tok(B) is a finite sample of tokens of a classification B, we have the infomorphism (6.3):

f = (
←−
f ,
−→
f ) : (

←−
f (F),Typ(A),
A) −→ (F ,Typ(B),
B), (6.9)

while for a finite sample G ⊆ Typ(A), we have:

f = (
←−
f ,
−→
f ) : (Tok(A),G,
A) −→ (Tok(B),

−→
f (G),
B), (6.10)

We will henceforth assume that finite samples of tokens (and types) have been taken, so that we
may consider, as in (5.8), well-defined simplicial maps

N(f) : N(A) −→ N(B), (6.11)

as defined for the Čech nerve of the corresponding Chu spaces, here with respect to finite samples of
tokens and types. Here again, the driving intuition is that no more than a finite number of tokens
are ever available to observation as exemplars of any type, and no more than a finite number of
properties (i.e. types) are ever available to observation as characteristics of token. The notions of
coarse-graining and finite refinement introduced in §5.5 carry over to this setting exactly.

6.7 Associating a theory with a classification

Here, and in the following sections, we collect together some useful definitions from Barwise and
Seligman (1997) and Barwise (1997), starting with sequents and theories:
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Definition 6.3. Let Σ be an arbitrary set (which may be viewed as set of types). A binary
relation ` between subsets of Σ is called a consequence relation on Σ. A (Gentzen) sequent is a
pair I = 〈Γ,∆〉 of subsets of Σ (here it is apt to view Γ and ∆ as sets of situation types). A sequent
I = 〈Γ,∆〉 is said to hold of a situation s provided that if s supports every type in Γ, then it
supports some type in ∆. A sequent I is said to be information about a set S of situations if it
holds at each s ∈ S; here again the causal notion of information flow is evident. Finally, a sequent
is called a partition of a set Σ′ if Γ ∪∆ = Σ′ and Γ ∩∆ = ∅.

Definition 6.4. A theory is a pair T = 〈Σ,`T 〉, where `T is a consequence relation on Σ. A
constraint of the theory T is a sequent 〈Γ,∆〉 of Σ for which Γ `T ∆. A sequent 〈Γ,∆〉 is T -
consistent if Γ 0T ∆.

Here again, the idea of some aspects of a situation, either causally requiring or merely causally
allowing other aspects of a situation, makes this definition clear.

Each classification has a theory associated with it in the following way (see also Definition 6.6
below). A theory Th(A) = (ΣA,`A) generated by a classification A, satisfies for all types α and
all sets Γ,Γ′,∆,∆′,Σ′,Σ0,Σ1 of types (Barwise and Seligman, 1997, Prop 9.5):

(1) Identity : α ` α.

(2) Weakening : If Γ ` ∆, then Γ,Γ′ ` ∆,∆′.

(3) Global cut : If Γ,Σ0 ` ∆,Σ1, for each partition 〈Σ0,Σ1〉 of Σ, then Γ ` ∆.

More generally, we can say that a theory T = 〈Σ,`T 〉 is regular if it satisfies the above three
conditions.

6.8 Local logics

We can specify a classification of a regular theory T as given by:

(1) Typ(Cl(T )) = Typ(T ).

(2) Tok(Cl(T )) = {〈Γ,∆〉 : 〈Γ,∆〉 is a T consistent partition of Typ(T )}.

(3) 〈Γ,∆〉 `Cl(T ) α if and only if α ∈ Γ.

Indeed, for any regular theory it can be seen that Th(Cl(T )) = T .
Since we are mainly considering distributed systems, and information processing entails com-

putation within a logical framework, the following system of local logics (Barwise and Seligman,
1997, Def. 12.1) is one suited to representing various types of state spaces.

Definition 6.5. A local logic consists of a triple (L = 〈Tok(L),Typ(L),
L〉,`L,NL) in which we
have:

(1) a classification L = 〈Tok(L),Typ(L),
L〉,

(2) a regular theory Th(L) = (Typ(L),`L), and

(3) a subset NL ⊂ Tok(L), called the normal tokens of L, which satisfy all of the constraints of
the theory Th(L) in (2).
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Definition 6.6. Let A be a classification. The local logic generated by A, denoted Lg(A), has
classification A, a regular theory Th(A) = (Typ(A),`A), and all its tokens are normal. A logic is
said to be natural if it is generated by some classification.

In fact, for any local logic L on A, we have L = Lg(A) by Barwise and Seligman (1997, Prop.
12.7). This relationship will be exemplified in Example 7.1 in the context of ontologies.

Intuitively, a local logic is “local” to the classification that generates it. Infomorphisms allow
mapping the local logic of one classification to that of another; hence we can think of channels
as supporting the flow of locally-defined logical relations between classifications. Recalling from
§5.5 that any classification can be interpreted as defining a coarse-graining and hence a “scale”
at which information is being organized and represented, each local logic can be thought of as a
“logic at some level of description.” In the context of cognition, this interpretation will be made
explicit in Part II (Fields and Glazebrook, 2018) as applying to “levels” of either abstraction-based
or mereological hierarchies.

As any classification can also be interpreted as describing a state space (§3.2), one can further
associate a canonical logic Lg(S) to any state space S. Specifically, if S is such a state space with a
classification of events Evt(S), then we can speak of an S-logic as a logic L on this classification such
that Lg(S) ⊆ L, with the intuition that this S-logic can accommodate the theory that is implicit to
the structure of S (Barwise and Seligman, 1997, §16).

Remark 6.4. In Barwise (1997), L is called an information context and ` is a binary relation
relating sets of situation types. In this case NL is said to be a set of normal situations. Intuitively,
these are the situations that the available information concerns. They may comprise all, or only
some of the situations satisfying the information. For instance, we may start with some set of
normal situations accounting for an individual’s experiences to date, and then the information
context consists of all the sequents satisfied by, i.e. consistent with, this experience. Stepping
outside of the context generates “surprise” in the sense of expectation violation (cf. Friston (2010)).

Next, we look to what extent an infomorphism between classifications will respect the associated
local logics. This is given by the following (Barwise and Seligman (1997, 12.3)):

Definition 6.7. A logic infomorphism f : L1 � L2, consists of a covariant pair f = 〈f ,̂ f∨〉 of
functions satisfying

(1) f : Cl(L1) � Cl(L2) is an infomorphism of classifications.

(2) f̂: Th(L1) −→ Th(L2) is a theory interpretation, and

(3) f∨[NL2 ] −→ NL1

For further consequences of this definition, see Barwise and Seligman (1997).

Example 6.4. For instance, if we have a binary channel Chan = {f : A � C, g : B � C}, then
the local logic (see §6.8 below) on B induced by Chan, is the logic LgChan(B) = g−1[f [Lg(A)]] (in
Barwise and Seligman (1997, 14.1) classifications A and B are interpreted as “idealization” and
“reality”, respectively). This induced logic can be characterized by (Barwise and Seligman, 1997,
Prop. 14.2):

(i) A partition 〈Γ,∆〉 of Typ(B) is consistent in LgChan(B) if and only if 〈f−1[g[Γ]], f−1[g[∆]]〉
is the state description of some a ∈ Tok(A).
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(ii) A token b ∈ Tok(B) is normal in LgChan(B), if and only if it is connected to some token
a ∈ Tok(A).

6.9 Boolean Classification

We can exemplify local logics following Barwise and Seligman (1997); Barwise (1999) in terms of
a Boolean classification A = 〈S,Σ,
,∧,¬〉. Here we have a set S of situations (tokens as objects)
and a set Σ of propositions (types as attributes). This leads to a Boolean local logic L = 〈A,`, N〉
where N ⊆ S consists of the normal situations (Barwise and Seligman, 1997; Barwise, 1999). If
s ∈ N is a normal situation, Γ ` ∆ and s 
 p, for all p ∈ Γ, then s 
 q for some q ∈ ∆. A partial
ordering “⊆” on local logics L1,L2 on a fixed classification of A is defined by L1 ⊆ L2, if and only
if:

(1) for all sets Γ,∆ of propositions, Γ `L1 ∆ entails Γ `L2 ∆, and

(2) every situation of A that is normal in L2 is also normal in L1.

Now, if we take any set of sequents T , the logic Lg(AT ) generated by T on A:

(i) has as normal situations all of those situations that satisfy the sequents in T ,

(ii) has as constraints all sequents satisfied by all situations in N , and

(iii) has as normal situations all of the situations of A satisfying these constraints.

Given a fixed Boolean classification (Barwise, 1999):

(1) If T0 ⊆ T1, then Lg(AT0) ⊆ Lg(AT1).

(2) If N0 ⊇ N1, then Lg(AN0) ⊆ Lg(AN1).

Example 6.5. Suppose A is a classification of bird sightings (observations), and N consists of the
actual sightings to date. Then Lg(AN ) has as constraints all sequents satisfied by all those bird
sightings to date, and the normal situations consist of all bird sightings that satisfy all of these
constraints, a set that clearly contains N . This logic may entail the constraint BIRD ` FLY, a
constraint that holds as long as the situations encountered are meaningfully compatible with the
elements of N . But now, suppose a penguin is observed. It will lie outside of the normal situations
since it violates BIRD ` FLY. This observation uncovers a new set N ′ ⊃ N , and accordingly their
logics satisfy Lg(AN ′) ⊆ Lg(AN ). There will be fewer constraints tenable in Lg(AN ′) as we can see,
since BIRD 0 FLY in this new logic.

7 An excursion into Channel Theory II

Classifications and channels have been applied widely in theoretical computer science; we briefly
review some of these applications here as motivations for applying these tools to perceptual pro-
cessing.
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7.1 The information channel in a MLP network

One of the earliest ANNs studied was the Multilayer Perceptron (MLP) network (Rosenblatt, 1961;
Rumelhart et al., 1986). As with typical ANNs, it has an input layers (Ii), hidden layers (Hi), and an
output layer (Oi) with weighted directional (in an MLP, exclusively feedforward) linkages between
subsequent layers. Kikuchi et al. (2003) develop a Chu space/Channel Theory representation of
a 3-layer MLP, showing how the synaptic weights between layers form a channel; we follow their
example closely.

Let woij denote a synaptic weight between the j-th neuron in the hidden layer and the i-th
neuron in the output layer. Similarly, let whjk denote a synaptic weight between the k-th neuron
in the input layer and the j-th neuron in the hidden layer. Then for a given state function f(x),
the layers Oi, Hi and Ii are related in accordance with

Oi = f(
∑
j

woijHj) = f(
∑
j

woij f(
∑
k

whjkIk)). (7.1)

It is convenient to regard an MLP with a fixed topology as a map F : I −→ O, from the input
data space I = {Ii} to the output data space O = {Oi}, so that F is uniquely defined by a point
in the parameter space of weights Φ = {〈wh,wo〉}. In this way, a fixed topology on a MLP can
be represented as F〈wh,wo〉, once given 〈wh,wo〉 ∈ Φ.

Next consider the sub-parameter spaces Φh = {〈wh〉} and Φo = {〈wo〉}, and the following
three classifications:

(1) A = (Tok(A),Typ(A),
A) (the states of “cognition” i.e. of O);

(2) B = (Tok(B),Typ(B),
B) (the states of the “environment” i.e. of I);

(3) C = (Tok(C),Typ(C),
C) (the states of the network);

where for the tokens A = Φh, B = Φo and C = Φ, we define projections

gh : Φ −→ Φh, 〈wh,wo〉 7→ 〈wh〉
go : Φ −→ Φo, 〈wh,wo〉 7→ 〈wo〉

(7.2)

as well as the obvious respective inclusions fh : Φh −→ Φ, fo : Φo −→ Φ. Thus, we obtain a core
(and vertex of a cocone) that is in C along with an information channel

C = 〈wh,wo〉

〈wh〉

fh
88

〈wo〉

fo
ff

(7.3)

where, as shown by Kikuchi et al. (2003), an algorithm for modifying 〈wh,wo〉 corresponds to a
local logic on C. This method can be developed in terms of Distributed Systems, as explained below
in §7.2 (see also Remark 7.1).
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7.2 Distributed Systems

Following the development of Barwise and Seligman (1997, Ch. 6) we provide an example of
Dretske’s “Xerox principle”, namely, that information flow is transitive. Consider two information
channels sharing common infomorphisms. Suppose the first channel represents the examination of
a map, capturing the notion of a person’s perceptual state carrying information about the map
being examined. The second channel represents the informational relationship between the map
and the region it depicts. These coupled channels can be illustrated:

B1 B2

A1

f1
==

A2

f2
aa

f3
==

A3

f4
aa (7.4)

Recall that the elements of Tok(B1) are ‘connections’. In this case the connections are spatio-
temporal perceptual events involving persons in Tok(A1) looking at maps in (i.e. elements of)
Tok(A2). The connections of the second channel, elements of Tok(B2), are spatio-temporal events
involving making the maps in Tok(A2) to represent various regions in Tok(A3). Under certain
circumstances, a person’s perceptual state carries information about a particular mountain, given
that the person is reading a map showing that mountain. In this regard, we may reasonably consider
A1 as the idealized space of the physical space A3.

The next step is to construct another channel that fits both B1 and B2 together. The process
is: i) choose a person, ii) go to a map she is reading, and then iii) proceed to the region shown
on that map. Here we will restrict to pairs c = (b1, b2) ((perceptual event, map-making)), so that
f2(b1) = f3(b2) = a2 holds, i.e. there is just one map in question. In this way, types β1 = f2(α2)
and β2 = f3(α2)) are equivalent since they are both translations of a2. This is built into the
channel by identifying β1 and β2 (cf. the biextensional collapse of a Chu space) and gives rise to
a new classification C having the above tokens and Typ(C) = Typ(B1 ∪B2), but identifying types
originating from a common type in A2. Thus we obtain a new channel with core C, connecting B1

and B2, as depicted below:

C

B1

g1
==

B2

g2
aa

A1

f1
==

A2

f2
aa

f3
==

A3

f4
aa

(7.5)

The channel infomorphisms are defined via composition h1 = g1f1, and h3 = g2h4, so linking A1

to A3.
In general, we have

Definition 7.1. A Distributed System A consists of an indexed family Cl(A) = {Ai}i∈I of classifi-
cations, together with a set Inf(A) of infomorphisms having both domain and codomain in Cl(A).
Each classification may be taken to support a local logic, along with the core of the channel.
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Definition 7.2. An information channel Chan = {hi : Ai � C} covers a distributed system A
if Cl(A) = {Ai}i∈I , and for each i, j ∈ I, and for each infomorphism f : Ai � Aj in Inf(A), the
following diagram commutes

C

Ai

hi

>>

f
// Aj

hj
`` (7.6)

Chan is said to be a minimal cover if it covers A, and for every other channel D covering A there
is a unique infomorphism from C to D.

A minimal cover of a system A converts the entire distributed system, consisting of multiple
channels, into a single channel. Every distributed system has a minimal cover, and this cover is
unique up to isomorphism (Barwise and Seligman, 1997, Th. 6.5).

Remark 7.1. The constructions of §7.1 and §7.2 can be extended to parallel distributed processing
(PDP) and to more general multi-layer, bidirectional ANNs (see e.g. Dawson, 2005; Rogers and
McClelland, 2004; Rumelhart et al., 1986). They are also applicable for modelling constructs of
the massively parallel, competitively based, distributed system of the Global Neuronal Workspace
(GNW) as studied in Baars and Franklin (2003); Dehaene and Naccache (2001); Dehaene and
Changeux (2004); Wallace (2005). Such modelling can be implemented, for example, by the Learned
Intelligent Distribution Agent (LIDA) architecture (Baars and Franklin, 2003; Franklin and Pat-
terson, 2006; Friedlander and Franklin, 2008). As observed by Maia and Cleeremans (2005), feed-
forward and feedback projections in connectionist networks can engage selective attention toward
more salient inputs, producing yet stronger weighting, that can predict which of the competing
elements will gain access to the GNW central core (cf. Friston, 2010; Grossberg, 2013; Shanahan,
2012). We employ these methods to characterize bidirectional information and constraint flow
between visual object files, object tokens, and event files in Fields and Glazebrook (2018).

7.3 Ontologies

It is often useful, when describing events or processes in some domain, to represent the ontology
of the domain explicitly as a type hierarchy. Following Schorlemmer (2005) (cf. Kalfoglou and
Schorlemmer, 2003, 2004):

Definition 7.3. An ontology is a tuple O = (C,≤,⊥, |) where

(1) C is a finite set of concept symbols;

(2) ≤ is a reflexive, transitive, and anti-symmetric relation on C (a partial order);

(3) ⊥ is a symmetric and irreflexive relation on C (disjointness);

(4) | is symmetric relation on C (coverage).

Remark 7.2. This is a basic working definition by Schorlemmer (2005). In the case of reference
ontologies, Kalfoglou and Schorlemmer (2003) append this definition with i) a finite set R of re-
lations, and ii) a function σ : R −→ C+ assigning to each relation its arity. This corresponds to
the functor (−)+ which sends a set C to the set of finite tuples whose elements are in C (see the
example below).
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In applications, the concepts in C typically characterize concrete objects in the domain, which
are brought into the theory by populating O with tokens. Let X be a set of objects to be classified
in terms of the concept symbols in C, via a classification relation 
A; we define a classification
A = 〈X,C,
A〉, where X = Tok(A), and C = Typ(A). The relation 
A will have to be defined so
that ≤, ⊥, and |, are respected. This requirement leads to:

Definition 7.4. A populated ontology is a tuple Õ = (A,≤,⊥, |) such that A = 〈X,C,
A〉 is an
information flow classification, O = (A,≤,⊥, |) is an ontology, and for all x ∈ X, and c, d ∈ C, we
have:

(1) if x 
A c, and c ≤ d, then x 
A d;

(2) if x 
A c, and c ⊥ d, then x 1A d;

(3) if c|d, then x 
A c, or x 
A d.

A populated ontology Õ = (A,≤,⊥, |) having A = 〈X,C,
A〉, determines a local logic L =
(A,`), whose theory (C,`), is given by the smallest regular theory (i.e. the smallest theory closed
under Identity, Weakening, and Global Cut), such that for all c, d ∈ C, we have:

c ` d⇔ c ≤ d
c, d ` ⇔ c ⊥ d
` c, d⇔ c|d

(7.7)

Example 7.1. To get an idea of what these last relations mean, take the case of a reference
ontology O = (C,R,≤,⊥, |, σ) as in Kalfoglou and Schorlemmer (2003, §4), with a set of concepts
C = {building, bird, starling}, the relation R = {isHavenFor}, arities σ(isHavenFor) = 〈building, bird〉,
where the partial order ≤, disjointness ⊥, and coverage |, are defined by the following lattice:

�

building bird

starling

♦

(7.8)

where � is the top and ♦ is the bottom of the lattice, i.e. building ⊥ bird and building|bird. In this
set up, we then have

building, bird `
starling ` bird

` building, bird

(7.9)

where the comma on the left-hand side has conjunctive force, whereas on the right-hand side it
has disjunctive force. Thus, with respect to set of concepts C, the above constraints declare,
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respectively: nothing is both a building and a bird, all starlings are birds, and everything (here) is
either a building or a bird.

With respect to the theory in question, the corresponding sequents are:

〈{bird, starling}, {building}〉
〈{building}, {bird, starling}〉
〈{bird}, {building, starling}〉

Then we have a classification in terms of the above sequents, as given by:


A building bird starling

〈{bird, starling}, {building}〉 0 1 1
〈{building}, {bird, starling}〉 1 0 0
〈{bird}, {building, starling}〉 0 1 0

Let the above set of sequents be denoted by X. Note how the sequents code the classification
A = 〈X,C,
A〉 whereby the left-hand sides of these indicate which columns contain ‘1’ entries,
and the right-hand sides indicate which columns contain ‘0’ entries. Assuming that X consists of
normal tokens, as in Kalfoglou and Schorlemmer (2003), we obtain a local logic L = (A,`) of the
ontology O. Given that L is a local logic on A, we have by Barwise and Seligman (1997, Prop.
12.7), that L = Lg(A); that is, with regards to Definition 6.6, L is the local logic generated by
the classification A. Associated to O is a local, populated ontology, as shown in Kalfoglou and
Schorlemmer (2003, §4), to which we refer for details.

Example 7.2. In order to formalize semantic integration of a collection of agents in Channel
Theory, Kalfoglou and Schorlemmer (2004) propose: i) modeling populated ontologies of agents
by classifications; ii) defining the channel, its core, and infomorphisms between classifications; iii)
defining a logic on the core of the channel; and, iv) distributing the logic to the sum of agent classi-
fications to obtain the required theory for semantic interoperability within the channel. These steps
give rise to a global ontology for two candidate agents, A1 and A2, requiring semantic integration.
This commences with a distributed logic of a channel C connecting the classifications A1 and A2

that model the agents’ populated ontologies Õ1 and Õ2, respectively:

C

A1

f1
>>

f
// A2

f2
`` (7.10)

At the core of the channel C, Typ(C) covers Typ(A1) and Typ(A2), while elements of Tok(C)
connect tokens from Tok(A1) with those from Tok(A2). Effectively, the global ontology comes
about when the logic on the core of the channel is distributed to the sum of classifications A1 +A2,
for the total semantic integration of the combined events.

The structure of a typical ontology mapping may thus be seen as follows Kalfoglou and Schor-
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lemmer (2003):
Or

ww ''
Oloc1

''

Oloc2

ww
Oglob

(7.11)

where Or is a reference ontology, Oloc1 ,Oloc2 are local ontologies, and Oglob is a global ontology.

7.4 Quotient channel

Given an invariant I = 〈Σ, R〉 on a classification A, the quotient channel of A by I is the limit of
the distributed system depicted by

A τI←− A/I τI−→ A. (7.12)

As a refinement of any other such channel, the quotient channel makes the following diagram
commute

C

A

g1

==

A/IτIoo

h

OO

τI // A

g2

aa (7.13)

Remark 7.3. An example is a hierarchially modular chain, where at each level of abstraction, the
tokens can be inherited, and the resulting infomorphisms are created by systematically composing
those from the levels below. As seen in Franklin and Patterson (2006) or Friedlander and Franklin
(2008), the perception-to-memory relationships and actions of a typical LIDA semantic network
architecture appear to fit into this pattern.

Remark 7.4. Ideas such as information flow, formal concepts, conceptual spaces, and local logics
can be categorically unified when they are embraced within the abstract axiomatization of an
Institution (Goguen and Burstall, 1992; Goguen, 2005a,b). This consists of a functor from an
abstract category of ‘Signatures’ to a category of classifications that involves ‘contexts’ linked via
the ‘satisfaction relation’ (
). As pointed out in Kent (2016), information flow is a particular case
of FOL (which is thus one Institution), but the classification relation between Tokens and Types
abstracts the Institution satisfaction relation between structures and sentences. For a further
application of these concepts to ontologies, see Spivak and Kent (2012).

7.5 State spaces and projections

Recall that a state space is a classification S for which each token is of exactly one type, and where
the types of the space are simply the states themselves. Here a is said to be in state σ if a 
S σ.
The space S is complete if every state is the state of some token.

Definition 7.5. A projection f : S1 ⇒ S2 from a state space S1, to a state space S2 is given
by a covariant pair of functions, such that for each token a ∈ Tok(S1), we have f(stateS1(a)) =
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stateS2(f(a)). This amounts to the commutativity of the following diagram:

Typ(S1)
f // Typ(S2)

Tok(S1)

stateS1

OO

f
// Tok(S2)

stateS2

OO
(7.14)

The composition of projections is well-defined, and so too is the Cartesian product Πi∈ISi of
indexed state spaces with natural projections

πSi : Πi∈ISi ⇒ Si, (7.15)

(see Barwise and Seligman (1997, §8.2)).

7.6 The Event Classification

Following the development of ideas in Barwise and Seligman (1997, Ch. 9), studies such as Kakuda
and Kikuchi (2001) define the Event Classification Evt(S) associated with a state space S as follows:

(1) Tok(Evt(S)) = Tok(S);

(2) Typ(Evt(S)) = P(Typ(S));

(3) s 
Evt(S) α is defined by states(s) ∈ α, for s ∈ Tok(Evt(S)) and α ∈ Typ(Evt(S));

where as before, P(·) indicates the power set.
Briefly recapping, this says that the space of events Evt(S) associated to S has as its tokens

the tokens of S, and its types are arbitrary sets of sets of states of S. The classification relation
s 
Evt(S) α above is equivalent to stateS(s) ∈ α. Following Barwise and Seligman (1997, Prop.
8.17), given state spaces S1 and S2, the following are equivalent:

(1) f : S1 ⇒ S2 is a projection;

(2) Evt(f) : Evt(S2) � Evt(S1) is an infomorphism.

In fact, for any state space S, the classification Evt(S) is a Boolean classification in which the
operations of taking intersection, union, and complement are here conjunction, disjunction, and
negation, respectively (Barwise and Seligman, 1997, Prop. 8.18).

Definition 7.6. Let S be a state space. The local logic generated by S, denoted Lg(S), has classi-
fication Evt(S), regular theory Th(S), and all of its tokens are normal.

For further relationships see Barwise and Seligman (1997, 12.1 - 12.2).

Remark 7.5. Taking K = [0, 1], the evaluation relation


Evt(S): Tok(Evt(S))× Typ(Evt(S)) −→ [0, 1] (7.16)

together with (logic) infomorphisms between event classifications, may be compared with the con-
cept of a perceptual strategy as described in Hoffman, Singh and Prakash (2015).
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7.7 State space systems

Considering the above ingredients we now seek a unifying principle that characterizes the state
space model and provides a suitable information channel. This motivates starting with:

Definition 7.7. A state-space system consists of an indexed family S = {fi : S ⇒ Si}i∈I of state-
space projections with a common domain S, called the core of S, to state spaces Si (for i ∈ I); Si
is called the ith component space of S.

We now consider an “event” Evt as a functor that transforms a state-space system into an
information channel. Taking a pair of state spaces as an example, we first take projections:

S
fi

��

fj

��
Si Sj

(7.17)

Next, applying the functor Evt to this diagram yields a family of infomorphisms with a commom
domain Evt(S), yielding an information channel:

Evt(S)

Evt(Si)

Evt(fi)
99

Evt(Sj)

Evt(fj)
ee

(7.18)

State space addition produces a further commuting diagram, where for ease of notation, we write
σi for σEvt(Si), and simply f for

∑
k∈I Evt(fk):

Evt(S)

Evt(Si)

Evt(fi)
55

σi
//
∑

k∈I Evt(Sk)

f

OO

Evt(Sj)σj
oo

Evt(fj)
ii (7.19)

Example 7.3. Following Kakuda and Kikuchi (2001, §4), let T be a regular theory, and let S be a
state space. A medium system denoted D := 〈D,N, f, p〉 between T and S, consists of the following:

(1) a state space D;

(2) a subset N of Tok(D);

(3) an infomorphism f : Cl(TTyp(T )) � Evt(D);

(4) a projection p : D ⇒ S;

where 〈Tok(D),Typ(T ),`T,N,Typ(D), stateD,
−→
f ,
←−
f 〉 forms a functional scheme. Here D is called

the medium space of D. Kakuda and Kikuchi (2001, §4) define an information channel:

Evt(D)

Cl(TTyp(T))

f
88

Evt(S)

Evt(p)
dd

(7.20)

through Evt(D) to Evt(S).
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Example 7.4. Sakahara and Sato (2008, 2011) employ the concept of the core of a binary channel,
when realized as a classification, in order to describe (modal) logical relationships holding for an
agent whose cognition is determined by some regular theory as defined in §6.7 above (cf. Barwise,
1997). Consider separate source (A) and target (B) classifications, and represent the agent’s knowl-
edge by a regular theory T = 〈Σ,`〉. The idea is to construct a set of possible and realizable states
in several steps:

(1) For a source classification A, and a target classification B, let Ω〈A,B〉 denote the set of all
partitions of Typ(A) ∪ Typ(B), called the set of states generated by A and B.

(2) The set of realizable states generated by A and B is given by

ΩR
〈A,B〉 := {〈Θ,Λ〉 ∈ Ω〈A,B〉 : ∃a ∈ A, Typ(a) ⊆ Θ and, Typc(a) ⊆ Λ}, (7.21)

where the notation Typc(a) indicates the complement, i.e. everything not in Typ(a).

(3) The set of impossible states under the theory T is given by

ΩIP
〈A,B|T 〉 := {〈Θ,Λ〉 ∈ Ω〈A,B〉 : Θ `T Λ}. (7.22)

The “impossibility” here is that Ω constrains a Λ with which it is disjoint.

(4) The possible states under the theory T is then

ΩP
〈A,B|T 〉 = Ω〈A,B〉\ΩIP

〈A,B|T 〉. (7.23)

(5) The possible and realizable states under the theory T is thus

ΩPR
〈A,B|T 〉 = ΩP

〈A,B|T 〉 ∩ ΩR
〈A,B〉. (7.24)

The cognizance classification C〈A,B,T 〉 generated by A,B and T is then given by

C〈A,B,T 〉 :=
〈
ΩPR
〈A,B|T 〉,Typ(A) ∪ Typ(B),
C〈A,B,T〉

〉
(7.25)

where the relation 
C〈A,B,T 〉 is defined as 〈Θ,Λ〉 
C〈A,B,T 〉 α, if and only if α ∈ Θ, i.e. the choice of
Λ can be arbitrary provided it is disjoint from Θ.

7.8 On comparing and combining the Shannon Theory of Information with
Channel Theory

Barwise (1997) recalls Shannon’s Inverse Relation between possibilities and information, basically
saying that eliminating possibilities from consideration amounts to increasing one’s information and
vice-versa. That relationship is fundamental to Dretske’s original goal of developing a semantic
theory of information based on possibilities (Dretske, 1981, 2000). Though very general as a
quantitative theory of communication flow, the original Shannon theory had largely overlooked
the question of semantic content. In any Dretske-type theory, the basis of semantic content is
in the world, i.e. in the events or situations that signals or states carry information about. By
showing how local logics are connected by information networks, Channel Theory provides a general
qualitative theory of information flow in this context. ‘Channels’ in the theory are more general
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than the traditional idea of the Shannon communication channels (Cover and Thomas, 2006). In
Shannon’s theory, information flow in a channel is defined in terms of reduction of uncertainty
about the type of event that will occur; it says nothing about the semantics of any specific bit, i.e.
about any specific token. Channel Theory specifically concerns particular tokens x and statements
of the form “x is an A.” Allwein (2004); Allwein, Moskowitz and Chang (2004) create a synthesis of
Shannon’s quantitative theory with the Barwise-Seligman qualitative theory to address the question
of how specific objects, situations and events carry information about each other.

A classification of possible outcomes of events starts with a probability space P = 〈Ω,Σ, µ〉,
where Ω denotes the set of possible outcomes, Σ is a σ-algebra on Ω whose members represent
events, and µ is a probability measure on σ representing the probability of an event having or being
associated with a particular outcome.¶ We define a classification Tok(P) = Ω, Typ(P) = Σ, and
let ω 
P e, if and only if ω ∈ e. In this context, an infomorphism between probability spaces is
topologically a continuous map (Seligman, 2009).

To see how the basic ontology of the Shannon theory can be conveniently embedded in that of
Channel theory, note that the former’s basic unit of information is some tuple of a binary relation.
The relation is restricted to be of the form x 
 V , where 
 is regarded as a function, and V is
the value of the Token x. But closer inspection reveals this characterizes a state space in which V
is a state and tokens are ignored. In Channel Theory there are states, but tokens are not ignored
and types are values, as in §6.1. States may be amalgamated to form Events as in §7.6 and §7.7.
Channel theory permits this by firstly preserving the tokens, and then replacing states with types,
whose events are also types: for some event E, x 
 E, just when x 
 s, for some state s ∈ E
(Allwein, Moskowitz and Chang, 2004). This is basically the embedding of the one theory into the
other, and the two theories together admit a certain generalization as follows.

The presence of a sequent in an information channel (as outlined in §6.8) effectively represents a
logical gate, and this kind of structure can be seen as more general than a Markov structure (cf. the
Kolmogorov axioms in Allwein, 2004; Allwein, Moskowitz and Chang, 2004), since sequents enable
the information flow to simultaneously support a flow of reasoning. Specifically, probabilities can
be assigned to sequents in A as follows. Suppose we have:

M 
A N ∀x(x 
A M ⇒ x 
A N), (7.26)

then the sequent relation ` can be weakened by removing ∀, and instead stating that for any x, we
have a probability x 
 N , given x 
M ; that is, the probability that x satisfies N given it satisfies
M . This is clearly a conditional probability, so one defines:

M 
P
A N := P(M |N). (7.27)

Thus when the sequent’s conditional probability is p, say, we have M 
pA N . A priori, one must
have x 
A M in order to apply M 
A N in a argument. The probability of the former holding
in A, is P(M). Then x 
A N follows from the rule P(M) ·M 
P

A N . Probability axioms for a
Countable Classical Propositional Logic are developed in Allwein (2004) (cf. Allwein, Moskowitz
and Chang, 2004) to which we refer for details. Note that information flow in distributed systems
can be interpreted dynamically; this amounts to causation in an informational context, consistent

¶Recall that a σ-algebra over Ω is a set Σ of subsets of Ω, such that ∅ ∈ Σ, Ω−e ∈ Σ, for each e ∈ Σ, and
⋃
E ∈ Σ,

for each countable set E ⊆ Σ. µ is a probability measure on Σ, if and only if it satisfies the Kolmogorov axioms:
µ(∅) = 0, µ(Ω− e) = 1− µ(e), and µ(

⋃
E) =

∑
e∈E µ(e) if E is countable, and µ(e1 ∩ e2) = 0, for all e1 6= e2 ∈ E.
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with the Dretskean nature of the theory. In this respect, the relations between information theory
and logic are also conducive to understanding certain relations between causation and computation
(Collier, 2011; Seligman, 2009).

8 Colimits for piecing together local-to-distributed information:
Application to information flow

8.1 Cocones and Colimits

To a category theorist, minimal covers as described for Distributed Systems in §7.2 are familiar as
colimits, where the channel core C represents the vertex of a cocone (as was introduced in §6.4;
more formally, see e.g. Awodey (2010, Ch. 5)), and, as pointed out in Barwise and Seligman (1997,
§2.1), the existence of colimits of Chu spaces (classifications) was established in Barr (1979, 1991).
Let us briefly recall this concept with some graphic intuition behind the idea following Baianu et
al. (2006); Brown and Porter (2003).

The “input data” for a colimit is a diagram D, i.e. a collection of some objects in a category
C, together with some arrows between them, as depicted by:

. // .

��D = ·

<<

""

.

ZZ

//

��

.

ZZ

.

(8.1)

This generalizes our use of a directed graph in §6.4 by allowing the “vertices” and “edges” of D to
be objects and morphisms of an arbitrary category. Next we need ‘functional controls’ comprising
a cocone with base D and vertex an object C in C,

C

.

GG

// .

zz

WW

D .

88

AA

&&

.

dd

//

zz

OO

.

cc

[[

.

JJ (8.2)

such that each of the triangular faces of the cocone is commutative. The “output” from D will
be an object colim(D) in our category C defined by a special colimit cocone, such that any cocone
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on D factors uniquely through the colimit cocone. Effectively, the commutativity condition on the
cocone induces, in the colimit, an interaction of images from different parts of the diagram D. The
uniqueness condition makes the colimit the optimal solution to this factorisation problem.

Let us set
� = colim(D) (8.3)

where the dotted arrows in the diagram below represent new morphisms which combine to make
the colimit cocone:

C

colim(D) = �

Φ

88

.

kk

HH

// .

ll

zz

VV

D ·

OO

66

AA

((

.

bb

dd

//

zz

OO

.

cc

jj

ZZ

.

KK

[[

(8.4)

and for which the broken arrow Φ is constructed by requiring commutativity for all of the triangular
faces of the combined diagram. Next, stripping away the ‘old’ cocone results in a factorisation of
the cocone via the colimit:

C

colim(D) = �

Φ

88

.

kk

// .

ll

zzD ·

OO

66

((

.

bb

dd

//

zz

.

cc

jj

.

[[

(8.5)

Intuitively, the process can be seen as follows. The object colim(D) is pieced together from the
diagram D by means of the colimit cocone. From beyond D, an arbitrary object C in C ‘sees’ D as
mediated through its colimit. This means that if C is going to interact with all of D, then it does
so via colim(D). The colimit cocone can be thought of as a kind of program: given any cocone on
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D with vertex C, the output will be a morphism

Φ : colim(D)→ C (8.6)

as constructed from the other data. ‖

Example 8.1. Brown and Porter (2003) provide an analogy comparing colimits with how an email
message can be relayed. Suppose E denotes some email document. This is to be sent via a server
S, which decomposes E into numerous parts Ei (i ∈ I, an indexing set), and labels each part Ei,
so it becomes E′i. These labelled parts E′i are then sent to a number of servers Si, which then relay
these messages as newly labelled messages E′′i to a server SC , for the receiver C. The server SC
then combines the E′′i to produce the recovered message ME at C. Breaking the message down and
routing it through the Si appears arbitrary, but the system is designed such that ME is independent
of all choices made at each step of the process.

Many other illustrative examples applying colimits to computer science, social systems, and
neuroscience, can be seen in Baianu et al. (2006); Ehresmann and Vanbremeersch (2007); Healy
and Caudell (2006); Healy (2010); Porter (1994).

8.2 Coordinated channels in ontologies

Here we describe how the colimit concept features in semantic integration within an information
channel. Suppose we have two prospectively interoperating agents A1, A2, with each agent Ai
(i = 1, 2) having its knowledge represented according to its own conceptualization, as specified in
relationship to its ontology Oi, respectively. This means that a concept of O1 will, a priori, be
considered semantically distinct from O2, even if they are equivalent syntactically. However, the
behavior of the agents can provide evidence for a meaning common to A1 and A2. Let us us assume
that the agents’ ontologies are not open to a third-party inspection. Kalfoglou and Schorlemmer
(2004) use a channel to coordinate the populated ontologies (cf. §7.3) Õ1, Õ2 by capturing the degree
of participation of each agent in communicative behaviors. Specifically, i) agent Ai attempts to
“explain” a subset of its concepts to other agents, and ii) other agents exchange with Ai some of
their own tokens, thus increasing the set of tokens originally available to Ai.

To see how this degree of participation can be captured by Channel Theory, Kalfoglou and
Schorlemmer (2004) introduce classifications Ai = 〈Tok(Ai),Typ(Ai),
Ai

〉, corresponding to the
agents Ai, respectively, along with subclassifications A′i = 〈Tok(A′i),Typ(A′i),
A′i

〉, and infomor-
phisms gi : A′i −→ Ai, for which functions ĝi and ǧi are the inclusions Typ(A′i) ⊆ Typ(Ai) and
Tok(A′i) ⊆ Tok(Ai), respectively. It is from the subclassifications A′i arising from the interactions
that coordination is established. Thus we have the following information channel with core (i.e.
cocone) C′:

C′

A1 A′1g1
oo

f1

>>

A′2

f2

``

g2
// A2

(8.7)

‖The diagrams included in (8.1)–(8.5) are reproduced from Baianu et al. (2006); Brown and Porter (2003), with
permission from R. Brown
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The optimal coordinated channel that captures semantic integration achieved by the agents is then
represented by the colimit C′ = colim{A′1 ← S→ A′2} of the diagram linking the subclassifications
that model the agents’ participation in the interoperation:

C′

A1 A′1g1
oo

f1

>>

S
h1
oo

h2
// A′2

f2

``

g2
// A2

(8.8)

“Optimality” here means that every other channel induces a map to C′ when commutativity is
required. Similar techniques using information channels, along with colimits, are developed in the
framework of structure and language for logical environments in Kent (2016).

9 Conclusion

Category theory is in essence a theory of dualities. In this Part I, we have surveyed the techniques
of Chu spaces and Channel Theory in a semantically based, ontological framework, which will be
applied in Part II (Fields and Glazebrook, 2018) to fundamental aspects of cognition, and in partic-
ular to the study of visual object identification, by emphasizing the role of concepts and processes
representable as category-theoretic duals in cognitive processing. The roles of complementary infor-
mation flows at all scales, from on-center/off-surround networks to the dorsal and ventral attention
systems to the interplay of memory and prediction that constructs object histories, exemplify such
duality. Our motivation has been driven by the fact that, by taking object identities and object
persistence for granted, AI systems have largely neglected the problem of object re-identification
that lies at the heart of the frame problem (Fields, 2013, 2016). Taking this problem and the dual
organization required to solve it into account suggests reconceptualizations of learning and memory
as overarching dual processes, towards which Part II represents an initial foray. It is, finally, possi-
ble that the conceptual ground which we have covered in this Part I could be further supplemented
by some related techniques of higher dimensional algebra (Brown, Higgins and Sivera, 2011) and
those of n-categories (Leinster, 2004), topics which remain for further investigation.

Acknowledgment

The authors wish to thank several anonymous referees for their constructive criticism and helpful
comments which assisted improving the overall presentation. JFG also wishes to thank Professors
Charles Delman and Timothy Porter for interest in this work, and for various discussions.

• The authors report no conflict of interest involved in this work.

References

Abramsky, S. (2012). Big toy models: Representing physical systems as Chu spaces. Synthese, 186,
697–718.

Allwein, G. (2004). A qualititative framework for Shannon Information theories. In: NSPW ’04
Proceedings of 2004 Workshop on New Security Paradigms. New York: ACM (pp. 23-31).

39



Allwein, G., Yang, Y. & Harrison, W. L. (2011). Qualitative decision theory via Channel Theory.
Logic Logical Phil, 20, 1–30.

Allwein, G., Moskowitz, I.S. & Chang, L.-W. (2004). A new framework for Shannon information
theory. Technical Report A801024. Washington, DC: Naval Research Laboratory.

Awodey, S. (2010). Category Theory. Oxford Logic Guides 62. Oxford, UK: Oxford University
Press.

Baars, B. J. & Franklin, S. (2003). How conscious experience and working memory interact. Trends
Cogn. Sci., 7, 166–172.

Baars, B. J., Franklin, S. & Ramsoy, T. Z. (2013). Global workspace dynamics: Cortical “binding
and propagation” enables conscious contents. Front. Psychol., 4, 200.

Baianu, I. C., Brown, R., Georgescu, G. & Glazebrook, J. F. (2006). Complex nonlinear biodynam-
ics in categories, higher dimensional algebra and  Lukasiewicz-Mosil Topos: Transformations of
neuronal, genetic and neoplastic networks. Axiomathes,16, 65–122.

Barr, M. (1979). *-Autonomous categories (with Appendix by Po-Hsiang Chu). Lecture Notes in
Mathematics, 752. Heidelberg: Springer.

Barr, M. (1991). *-Autonomous categories and linear logic. Math. Struct. Comp. Sci, 1, 159–178.

Barwise, J. & Seligman, J. (1997). Information Flow: The Logic of Distributed Systems. Cambridge
Tracts in Theoretical Computer Science 44. Cambridge, UK: Cambridge University Press.

Barwise, J. (1997). Information and Impossibilities. Notre Dame J. Formal Logic, 38, 488–515.

Barwise, J. (1999). State spaces, local logics, and non-monotonicity. In: Moss, L. et al. (Eds.)
Logic, Language and Computation, Vol 2. (London, 1996), (CSLI Lecture Notes, 96) Stanford,
CA: CSLI Publications (pp. 1–20).

Barwise, J. & Perry, J. (1983). Situations and Attitudes. Cambridge, MA: Bradford Books, MIT
Press.

Berners-Lee, T., Hendler, J. & Lassila, O (2001) The Semantic Web. Scientific American, 284(5),
34–43.

Brentano, F. (1981). The Theory of Categories (Chisholm, R., and Guterman, N., translators). The
Hague: Nijhoff.

Brown, R. & Porter, T. (2003). Category theory and higher dimensional algebra: Potential descrip-
tive tools in neuroscience. In: Singh, N. (Ed.) Proceedings of the International Conference on
Theoretical Neurobiology, Delhi, February 2003, National Brain Research Centre (pp. 80–92).

Brown, R., Higgins, P. J. & Sivera, R. (2011). Nonabelian Algebraic Topology. (Tracts in Mathe-
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Goguen, J. (2005a). Information integration in institutions. Proposed for: Moss, L. (Ed.) Think-
ing Logically: A Memorial Volume for Jon Barwise. Bloomington IN: Indiana University Press
(https://cseweb.ucsd.edu/ goguen/pps/ifi04.pdf).

Goguen, J. (2005b). What is a concept? In: Dau, F. & Mungier, M.-L. (Eds.) Proceedings, 13th
Conference on Conceptual Structures (Lecture Notes in Artificial Intelligence, vol 3596). Kassel,
Germany: Springer (pp. 52–77).

Goguen, J. & Burstall, R. (1992). Institutions: Abstract model theory for specification and pro-
gramming. J. Assoc. Comp. Mach., 39, 95–146.

Gratus, J. & Porter, T. (2006). A spatial view of information. Theor. Comp. Sci., 365, 206–215.

Gratus, J. & Porter, T. (2005a). A geometry of information, I: Nerves, posets and differential forms.
In: Kopperman, R. et al. (Eds.) Spatial Representation: Discrete vs. Continuous Computational
Models, Dagstuhl Seminar Proceedings 04351, IBFI 2005, Schloss Dagstuhl, Germany.

Gratus, J. & Porter, T. (2005b). A geometry of information, II: Sorkin models and biextensional
collapse.In: Kopperman, R. et al. (Eds.) Spatial Representation: Discrete vs. Continuous Com-
putational Models, Dagstuhl Seminar Proceedings 04351, IBFI 2005, Schloss Dagstuhl, Germany.

Grossberg, S. (2013). Adaptive Resonance Theory: How a brain learns to consciously attend, learn,
and recognize a changing world. Neural Networks, 37, 1–47.

Healy, M. J. & Caudell, T. P. (2006). Ontologies and worlds in category theory: implications for
neural systems. Axiomathes,16, 165–214.

42



Healy, M. J. (2010). Category theory as a mathematics for formalizing ontologies. In: Poli, R.,
Healey,M. & Kameas A. (Eds.) Theory and Applications of Ontology: Computer Applications.
Berlin: Springer (pp. 487–510).

Hitzler, P. & Zhang, G.-Q. (2004). A Cartesian closed category of approximating concepts. Proc.
12th Internat. Conf. on Conceptual Structures, ICCS 2004, Huntsville, AL, July 2004. ( Lecture
Notes in Artificial Intelligence, 3127) Berlin: Springer (pp. 170–185).

Hitzler, P., Hölldobler, S. & Seda, A. K. (2004) Logic programs and connectionist networks. J.
Appl. Logic, 2, 245–272.

Hoffman, D. D., Singh, M. & Prakash, C. (2015). The interface theory of perception. Psychonom.
Bull. Rev., 22, 1480–1506.

Husserl, E. (1970). Logical Investigations. London: Routledge and Keagan Paul.

Kahneman, D., Triesman, A. & Gibbs, B. J. (1992). The reviewing of object files: Object-specific
integration of information. Cogn. Psychol., 24, 175–219.

Kakuda, Y. & Kikuchi, M. (2001). Abstract design theory. Ann. Japan Assoc. Phil. Sci., 10 (3),
19–35.

Kalfoglou, Y. & Schorlemmer, M. (2004). Formal support for representing and automating semantic
interoperability. The Semantic Web: Research and Applications. ESWS 2004, Heraklion, Crete
(Lecture Notes in Computer Science) Berlin: Springer (pp. 45–60).

Kalfoglou, Y. & Schorlemmer, M. (2003). IF-Map: An ontology-mapping method based on
information-flow theory. J. Data Semantics I (Lecture Notes in Computer Science). Berlin:
Springer (pp. 107–127).

Keifer, M. & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical
developments, current evidence and future directions. Cortex, 7, 805–825.

Kent, R. E. (2016). Information flow in logical environments. Preprint arXiv:1603.03475v1[cs.LO].

Kikuchi, M., Nagasaka, I., Toyoda, S. & Kitamura, S. (2003) A mathematical model of interactions
in artifact environment. Proceedings of SICE Annual Conference 2003 (pp. 2085–2090).
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