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Abstract: The relationship between philosophy and research on artificial intelligence (AI) has been difficult 
since its beginning, with mutual misunderstanding and sometimes even hostility. By contrast, we show 
how an approach informed by both philosophy and AI can be productive. After reviewing some popular 
frameworks for computation and learning, we apply the AI methodology of “build it and see” to tackle 
the philosophical and psychological problem of characterizing perception as distinct from sensation. Our 
model comprises a network of very simple, but interacting agents which have binary experiences of the 
“yes/no”-type and communicate their experiences with each other. When does such a network refer to a 
single agent instead of a distributed network of entities? We apply machine learning techniques to address 
the following related questions: i) how can the model explain stability of compound entities, and ii) how 
could the model implement a single task such as perceptual inference? We thereby find consistency with 
previous work on “interface” strategies from perception research. 

While this reflects some necessary conditions for the ascription of agency, we suggest that it is not sufficient. 
Here, AI research, if it is intended to contribute to conceptual understanding, would benefit from issues 
previously raised by philosophy. We thus conclude the article with a discussion of action-selection, the role of 
embodiment, and consciousness to make this more explicit. We conjecture that a combination of AI research 
and philosophy allows general principles of mind and being to emerge from a “quasi-empirical” investigation.
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1  Introduction

1.1  AI and Philosophy

The relationship between philosophy and research on artificial intelligence (AI) has been difficult since 
its beginning, with John Lucas, Hubert Dreyfus, John Searle, and Roger Penrose,1 among many others, 
arguing that AI is impossible, pointless, or misguided. On the other side of the divide, philosophers such as 
Aaron Sloman, Jack Copeland, or Margaret Boden2 are more sympathetic toward AI research as a means to 
advance the understanding of our minds. 

At the same time, a major criticism targeted at philosophical research was mounted by AI researchers: 
without proper implementation, purely theoretical or conceptual research is futile. While the current hype 

1 Lucas, “Minds, Machines, and Gödel”; Dreyfus, What Computers Can’t Do; Searle, “Minds, Brains, and Programs”; Penrose, 
The Emperor’s New Mind. 
2 Sloman, The Computer Revolution; Copeland, Artificial Intelligence: A Philosophical Introduction; Boden, The Creative Mind.
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about AI with its focus on technical gadgets is deplorable, we take this critique seriously. In the first part of this 
contribution, we thus adopt AI’s methodology3 of “build it and see” to address a problem at the intersection 
of ontology and psychology: the problem of defining a minimal model in which “perception” and “agency” 
can be meaningfully discussed. Here we explicitly distinguish perception from mere sensation, following 
standard accounts in the field but also Gibson, the embodied cognition movement, and the theory of active 
inference in viewing perception as the acquisition of significant, actionable information from an uncertain, 
challenging environment.4

While the questions of philosophy may not be solved by AI, some of them can be translated into a 
language suitable to be explored using logic, computer modeling or other methods of AI research. Such 
questions are generically of the following type: provided any particular model, how can one study 
phenomenon x with the help of such methods? A pioneering example was given by Alan Turing. Given a 
machine which follows a finite set of instructions and can do nothing but read symbols from a tape, move 
the tape, write or erase symbols, and change its state, which kinds of computations can it (not) perform? 
Turing later embraced the question of whether such a machine could appear to think, that is, whether 
it could successfully play the “imitation game”.5 Historically, Turing’s work led to the question how one 
could actually build a machine (classical or not) that could simulate a mind. To date, this has not been 
demonstrated. The methodology of testing theoretical ideas by implementation has, however, been applied 
to a wide variety of specific questions about the mind, from the requirements for logical reasoning6 to the 
nature of creativity.7 Two of the surprising insights to emerge from such work are that everyday human 
capabilities such as visual navigation or natural language understanding are far harder than playing chess 
or solving college-level math problems, and that experts in virtually any domain do not solve problems by 
following rules that they can report in language.8

Here we apply the AI methodology to a problem similar to Turing’s. Our model comprises a network of 
very simple, but interacting agents which have binary experiences of the “yes/no” type and communicate 
their experiences with each other. How can a network of such simple agents act as a single, coherent, stable 
entity? How can communication within such a network lead to coherent collective information processing, 
e.g. the perception of external signals, by the network as a whole? To investigate these questions, we 
implement a computational model and apply standard tools from machine learning which could be 
regarded as techniques to infer and optimize model parameters. 

Specifying stable patterns and solving a particular task (e.g. perception) are, we claim, necessary 
conditions for regarding such collective systems as agents in their own right. But they are not yet sufficient, 
a point we return to in our closing discussion. 

In the second part of this contribution, we look at the way conceptual analysis could be beneficial to AI 
research. AI research, if it is intended to contribute to a more general understanding of intelligence, would 
benefit from explicitly considering issues previously raised by philosophy. For example, philosophers have 
long debated the nature of goals and intentionality in relation to mind and being, whether from a naturalist 
standpoint,9 phenomenologically10 or in an existentialist framework.11 Some of this inspired later work on 
AI.12 In this spirit, we discuss how systems of distributed agents could select appropriate actions, the role 

3 Russell and Norvig, “Artificial Intelligence: A Modern Approach”, 1.
4 Gibson, The Ecological Approach to Visual Perception; Knill and Richards, Perception as Bayesian Inference; Chemero, Radical 
Embodied Cognitive Science; Friston, “Life as we know it”; Hoffman et al., “Interface Theory of Perception”.
5 Turing, The Essential Turing, 433. Note the particular specification given in the text of what is nowadays called a “Turing-
machine”. Turing’s 1936 insights regarding the limits of computation did not concern machines in general but this specific 
architecture.
6 Newell and Simon, “The logic theory machine”.
7 Hofstadter and Mitchell, “The copycat project: A model of mental fluidity and analogy-making”. 
8 For a general review, see Chater, The Mind is Flat.
9 Dretske, Flow of Information; Dennett, Intentional Stance.
10 Husserl, Logical Investigations; Merleau-Ponty, Phenomenology of Perception.
11 Heidegger, Being and Time; Sartre, Being and Nothingness.
12 Movements within AI that explicitly embrace such issues include artificial life, e.g. Steels and Brooks, The Artificial Life 
Route; embodied/enactive cognition, e.g. Froese and Ziemke, “Enactive artificial intelligence”; developmental robotics, e.g. 
Cangelosi and Schlesinger, Developmental robotics; and “biologically inspired” computing, e.g. Goertzel et al., “A world survey 
of artificial brain projects”. 
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of embodiment, and how the external world would appear to them. In particular the role of learning is 
discussed. This would make the appearance of a single unified entity more cogent. 

1.2  Existing Computational Frameworks and How They Are Used

Artificial neural networks (ANNs), also known as connectionist systems,13 are layered networks consisting 
of many elementary constituents (“nodes”) which are roughly modeled along physical neurons. Simple 
neural networks based on such nodes (also called “perceptrons”) were first conceived by McCulloch 
and Pitts to study intelligent behavior.14 In this model, each node receives one or more inputs and, after 
a weighted sum S  has been computed, outputs 1 if S  reaches a pre-defined threshold b. In subsequent 
elaborations, the output-characteristic of each neuron was taken to be sigmoidal, that is, it takes the value 
of the continuous function Ss S --= + - 1( ) (1 exp (, ( )))b b . But also functions other than sigmoidal are 
conceivable. For example, a popular choice nowadays is the “half-wave rectifier”.15 

The architecture of an ANN usually features three distinct sets of nodes, which are organized in layers. 
Nodes comprising the input layer receive environmental inputs and relay these inputs to nodes comprising 
one or more “hidden” layers (such an architecture is also known as “multilayer perceptron”). 

Figure 1. A simple ANN featuring two hidden layers of neurons; adapted from Nielsen, “Neural Networks and 
Deep Learning”.

Each hidden element sends a signal, based on the input it receives, to neurons in the next layer and so 
on. Finally, output nodes receive signals from hidden elements and specify the output of the neural net. 
The individual weights are representing the connection strengths between nodes. Standardly, ANNs do not 
have connections withing layers. However, this feature is implemented in recurrent neural nets (RNNs), e.g. 
Grossberg’s “adaptive resonance” networks.16 RNNs are promising tools, even though they are more difficult 
“to train” than conventional ANNs. The weighting of connections between nodes is central for learning, 
which is usually implemented via adjusting weights, using, for example backpropagation techniques.17 
Employing hierarchically structured ANNs equipped with multiple hidden layers of processing neurons 
led to the development of deep learning methods. ANNs are now the best publicly-known tools from AI 
research due to their broad applicability and some astonishing success stories (e.g. google’s alpha go18). 

13 McClelland et al., Parallel distributed processing. Early connectionist models interpreted nodes roughly as concepts, 
along the lines of semantic network models. Later models interpreted nodes “sub-symbolically,” more in line with ANNs; see 
Smolensky, “On the proper treatment of connectionism”. 
14 McCulloch and Pitts, “A logical calculus”.
15 LeCun et al., “Deep learning”.
16 Grossberg, “Nonlinear neural networks”.
17 Rumelhart et al., “Learning representations by back-propagating errors”. This technique has been widely applied and 
extended to multi-layer “deep learning” networks, c.f. Schmidhuber, “Deep learning in neural networks”.
18 Silver et al., “Mastering the game of Go”.
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ANNs and their focus on optimization techniques strongly emphasizes learning as a primary hallmark of 
intelligent systems. 

However, there exist also other computational frameworks for modeling. One is the framework of cellular 
automata, which was originally conceived of by John von Neumann and Stanislaw Ulam in order to study 
the process of self-replication.19 Cellular automata came to fame when in 1970 a Scientific American article20 
presented John Conway’s “game of life”. In a cellular automaton, unit cells are placed along a k-dimensional 
lattice (grid) and are updated according to a (globally valid) rule that specifies the evolution of each cell as a 
(local) function of the states of its neighbors. While lattice topology and neighborhood could be of different 
sizes, it was observed that already very simple setups (1-2 dimensions, 3-5 neighbors) could lead to the formation 
of seemingly complex and meta-stable patterns. In the “game of life”, for example, a simple rule defined on 
a 2-dimensional grid would lead to the formation of entities that seem to move along the grid, eating other 
entities and reproducing (Fig. 2), even though any “movement” was only apparent, and any “causal” power of 
these entities was just due to the “hidden” rule governing the underlying update scheme. 

Figure 2. Time steps in Conway’s game of life. A “gilder” is an emergent entity that seemingly “moves” across the 
grid. Created with Wolfram’s Mathematica 11.

One philosophical lesson is that any ascription of causal powers to macroscopic “objects” arising from the 
cellular dynamics is precarious. Similarly, any claim regarding the “causal powers of the brain”21 or other 
macroscopic physical objects might be equally precarious, e.g., when taken as referring to the capacity of 
some brain areas to “produce” mind. Any such causation might be distributed among many interconnected 
parts instead.

The perhaps most influential recent development in the theory of cellular automata came from Stephen 
Wolfram, who devised a numbering scheme of all “elementary” (1-dimensional) cellular automata and who 
classified cellular automata into different classes based on their long-term behavior.22 These correspond to 
(i) homogenous structures, (ii) simple and regular structures, (iii) pseudo-random and chaotic structures, 
and (iv) complex structures with a mixture of order and randomness. Relatively simple cellular automata can 
be designed which are computationally universal and even reversible. The framework of cellular computing 
is often summarized as “simple + parallel + local”23 and is appealing both in terms of computerization and 
in terms of application to biological and social systems.

Random Boolean Networks (RBN) are a related computational model, originally proposed by Stuart 
Kaufman to study gene regulatory networks in the late 1960’s.24 RBNs consist of a finite number (sometimes 
in the range of only a few dozens) of nodes which could be in either of two states. The states of the individual 
nodes evolve according to an updating rule which is a function of the states of each node and its neighbors, 
similar as in the cellular-automata framework. The future state of the network is determined fully by its 
present state. The topology of the network is given by a graph which determines which nodes interact with 
each other or, equivalently, the neighborhood structure of the RBN. RBNs are good model systems to study 
emergent behavior and phase transitions that occur already within a reasonably sized network. Often the 
topology is randomized, and typical research questions pertain to the relation between statistical properties 
of the underlying graph (e.g., its degree-distribution) and the dynamics of the network or, more generally 
speaking, to a possible characterization of RBNs in terms of their information-processing capacities (e.g., 
mutual-information between nodes or network states). 

19 Von Neumann and Burks, “Theory of self-reproducing automata”.
20 Gardener, “Life”, 120.
21 Searle, “The Causal Powers of the Brain”.
22 Wolfram, A New Kind of Science, 231ff.
23 Sipper, “Simple + parallel + local = Cellular Computing”.
24 Kauffman, Origins of Order, 465.
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A particularly useful concept which is similar to ideas in physics is the one of “attractors” in “state 
space”. The latter is defined as the space spanned by all possible states (configurations) of the network; 
the dynamics of the network, starting in some initial state, corresponds to a trajectory through state space. 
Eventually, in a finite network, such trajectories reach an attractor, referring to a set of states which seems 
to “pull” the states in their “vicinity” towards the set (formally, the set of states which eventually land in an 
attractor is called “the basin” of the attractor).25 

Early on, Kauffman speculated whether biological systems are such that they exhibit order at “the edge 
of chaos”, occupying regions in state space near the transition from ordered to chaotic behavior. 26 This is 
an example for how technical questions in computer modeling could shed light on fundamental questions, 
such as “What is life?”. 

Another model which is related to the cellular-automata framework is agent-based modeling (ABM). It 
was introduced to model the complex behavior of a system of interacting individual agents. Agents could 
make simple decisions based on the (limited) information available to them. The information available to 
an agent is strictly local, however, the patterns that emerge are global. A prominent example was devised by 
the Nobel laureate Thomas Schelling, who studied the effects of segregation in the United States using a very 
simple model.27 Given a fictional city, individuals can choose whether to change their neighborhood, based 
on their preference regarding their (local) neighborhood structure. Segregation (a global phenomenon) 
could occur even if an agent’s preference was just to live in a community where one is not in a minority. This 
suggested how a society can (arguably) exhibit racist tendencies even without (explicit) racist prejudices 
on the individual level and without a global mechanism that “concerts” individual actions. The agents’ 
“decisions” resemble the update rules of a cellular automaton.28 In many cases, the agents used in ABMs are 
mere sketches of individuals and are more similar to “dumb” molecular machines rather than to complex 
psychological entities. Despite this, ABMs are used as prolific tools in sociology,29 and they are conceptually 
close to Bruno Latour’s Actor-network theory,30 when “actors” are defined as any entity which influences 
the state of other entities in the network. ABMs illustrate that much of what we call complex or cognitive 
(psychological) capacities could already be modeled in terms of structured societies of relatively simple 
agents.

2  Perceptual Networks 

2.1  The Role of Ontology in Models

Underlying any model in science are assumptions about which things exist and how they relate to each 
other. Often, computational models are inspired by empirical processes. ANNs are modeled after the 
structure of physical neurons. RBN are modeled after (“first-order”) chemical reactions. ABM are modeled 
after decision-making individuals. These models do not strive to be realistic representations and involve 
idealization. Real neurons are much more complicated than perceptrons and involve processing at many 
biological levels (pertaining to synaptic potentials, neuro-transmitters, architectural constraints etc.).  

25 While RBNs are conceptually quite simple, it took several decades until their mathematical understanding took off. For 
example, an intriguing question pertains to the relation of network-size N and attractor length. In 1969, Kauffman suggested 
that the mean number of attractors scales with the square-root of N. While it was later shown mathematically that the mean 
number of attractors grows faster than polynomial, subsequent work on asynchronously updated RBNs confirmed a power law 
distribution for critical networks as initially proposed by Kauffman; cf. Samuelsson and Troein, “Superpolynomial Growth in 
Kauffman-networks”, 589; Greil and Drossel, “Dynamics of Critical Kauffman-networks”, 180.
26 Kauffman, Origins of Order, 27.
27 Schelling, “Dynamic Models of Segregation”, 149.
28 Note that the agents’ decision-making could be described by the update rules of a cellular automaton if one regarded not 
the agents which move between houses but the houses, which do not move but are populated by agents, to be the elementary 
constituents of the model. 
29 Macy and Willer, “From Factors to Actors”. Hegselmann et al, Simulation in the Social Sciences.
30 Latour, Reassembling the Social.
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For example, the dynamics of real (biological) neurons has a “refractory period”, that is, a time after previous 
excitation during which a neuron cannot again be excited. Refractory periods are important biologically, 
since they prevent neurons from constant firing. Also, learning in biological systems is different to the 
current learning methods employed for ANNs. Biologically plausible mechanisms should inherently be 
local and could affect the topology of the network itself (other than merely adjusting weights in a pre-
defined network). A prominent early proposal is Hebbian learning31 – neurons that “fire together, wire 
together”. 

The other models listed above are highly idealized too. Chemical (enzymatic) reactions are not of 
a digital (on/off) type and could be of various orders (first, second or third). Individuals are not simple 
quasi-physical mechanisms but complex psychological agents. Correspondingly, AI frameworks are not 
necessarily used to theorize about the things they were originally modeled on. Google’s alphaGo, for 
example, does not try to re-engineer or explain neural processes but to solve the problem of defeating 
human Go-players. It is also possible to use frameworks to study processes which at first sight seem more 
appropriate to be studied with different models. In principle, cellular automata could be used to study the 
dynamics of the brain even though the brain’s constituents are, to a first approximation, much more similar 
to the elements of an ANN.32 In general, then, the elementary entities of a computational model need 
not resemble its explanandum nor do they need to encode a (realistic) representation of it. However, the 
computational model should be able to reproduce (at least in an idealized way) the explanandum’s formal 
(structural) properties. Put more philosophically, there is a certain looseness of fit between the ontology 
of a model and the thing studied. On a more radical reading, there may simply be no uniquely specifiable 
ground of being, other than the ontologies we use to inform our models. The model presented in this article 
is premised on the existence of agents which have experiences and communicate them to other agents in 
the network. There is no ontological structure other than this. 

2.2  Computational Framework

The model which we propose in this paper, perceptual networks, combines many of the crucial features 
of the above modeling paradigms but gives them a more psychological interpretation. More concretely, 
perceptual networks are defined as networks of individual and excitable agents that (i) have experiences 
corresponding to their states, (ii) are located on a graph which encodes their interaction-topology, and  
(iii) whose individual actions affect the performance of the network. Such agents perceive certain messages 
and send messages, based on their experiences (states), to other agents in their environment. 

Similar to ANNs, perceptual networks can learn from experience by either changing their updating 
rule or by adjusting their connectivity within the network. These two processes correspond to a perceptual 
learning process (i.e. how to represent incoming information) and an action-related learning process 
(i.e. where to send information to) respectively. The analysis of information processing capacities and 
the “information geometry”33 embodied by a perceptual network is afforded by its basic graph structure. 
Perceptual networks share this feature with RBNs, and the idea that processes on the individual (local) 
level affect the global functioning of the network is consistent with the main thrust of ABMs and cellular 
automata. 

We will demonstrate in the following sections how perceptual networks could address two different but 
related problems. First is the problem of how our simple model could give rise to stable structures. Given 
the more radical reading advanced above, this problem is an ontological one. Without the bedrock of some 
essential “core” which our model is about, how is it that the basic setup of our model (a network of agents 
which occasionally get excited) could give rise to a stable structure? Second is the problem of how these 

31 Hebb, The Organization of Behavior.
32 Acedo, “A cellular automaton model for collective neural dynamics”. 
33 Amari, Information Geometry.
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structures enable “perception” at the scale of the whole network, where perception is understood broadly in 
terms of a “representation” which results from the application of (internal) rules embodied in the network, 
under conditions of uncertainty (modeled as noise). Note that our account of perception already includes 
a sense of “action” (in the form of communication between agents (nodes) within the network). Further 
ascriptions of agency pertain to more elaborate decision-making capabilities, the body and consciousness, 
which will be further commented on in the final section of the paper. 

Perceptual networks are a simplification of a framework previously proposed to study consciousness.34 
Given an external measurable space (a “world”), a “conscious agent” in this framework is a six-tuple consisting 
of two measurable spaces (“perception space” and “action space”), three kernels that connect the world and 
these spaces (“perception”, “decision” and “action”) and a time-counter which counts the number of kernel 
executions. This definition was refined and a network consisting entirely of “reduced conscious agents”, 
a concept introduced to distinguish “internal” aspects of a conscious agent from its “extrinsic” aspects, 
was introduced.35 It was shown theoretically that such a network could be usefully applied to problems in 
psychology and reproduce the architecture of many received models in cognitive science. 

Perceptual networks feature node (“agents”) that integrate information (“messages”) and relay this 
information to neighboring nodes in the network. The mapping of sensory information could be represented, 
for each node j, by a rule Rj which, given a message mj, together with its current state xj, outputs its next 
state x'j. The message mj is determined by the topology of the network A (represented by its adjacency 
matrix in the following).
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For simplicity, we look at deterministic rules, but the model should eventually be extended to model 
probabilistic inferences. We stress that such an update would represent a Markov process.36

The construction leaves open the possibility that the rules might change in the course of evolution. 
This is a prerequisite for any kind of learning in the network. Learning could affect the rules describing 
information integration, {Rj}, as well as network topology A. 

2.3  Asymptotic States and Attractors

In total, the rules define a circular updating scheme from network states to network states. We assume a 
homogenous updating rule R = {Rj } of the form: 

 
ì ³ï¢= = í
ïî

1 if 1
( ) ,  ,
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j

j j j

m
m Ax x  (2)

and we illustrate the state evolution by a toy network comprising N = 4 agents, as shown in Table 1. 
The continuous and dotted lines represent two different adjacencies A and Aʹ (left and middle column), 
giving rise to two different state evolutions, each starting in the initial state (1,0,1,0) (right column). 
Since the network is finite and closed, the state evolution will either land in a stationary state or, more 
generally, in an attracting set.

34 Hoffman and Prakash, “Objects of Consciousness”, 6.
35 Fields et al. “CA-networks”, 190.
36 More precisely, the update process corresponds to a homogenous discrete-time Markov chain, which would feature at least 
one stationary distribution (under the assumption that it is irreducible and non-periodic), cf. Chapter 3 in Gebali, Computer 
Networks.
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Table 1. Example of a Perceptual Network with two different adjacencies (left column; continuous and dotted 
lines respectively). Initially, nodes 1 and 3 are excited, the rules (given in text) and the adjacencies of the network 
(middle column) determine the state evolutions (right column).

Network Adjacencies State Evolutions

0   1   0   1
0   0   1   0
0   0   0   1
1   0   0   0

0   0   1   0
1   0   0   1
0   1   0   0
0   0   1   0

(1,0,1,0)
(0,1,0,1)
(1,0,1,0)
      …

(1,0,1,0)
(0,1,1,0)
(1,1,0,1)
(1,0,1,1)
(0,1,1,0)
      …

Which attracting set a state is part of (or whether it is a transient state) is determined by the network 
topology and the rules governing its evolution. In our toy model, the same initial state (1,0,1,0) reaches 
two different attracting sets respectively (depicted by the arrows in Table 1). In the first case, the network 
realizes a flip-flop circuit which permanently oscillates between the states (1,0,1,0) and (0,1,0,1) Table 1, right 
column, left-hand side). In the second case, the network falls into an attracting set which cycles through 
its states with period 3 (Table 1, right column, right-hand side). In this case the initial state furthermore is 
transient. In both cases, an initial state of (0,0,0,0) would be stationary and could be interpreted as ground- 
or terminal state of the network.

The stationary states and attracting sets represent the stable entities which are associated with the 
network. This gives an explicit answer to the question how the structure underlying our model could give 
rise to stable patterns on the level of networks. We will now show how such patterns could also be conceived 
of as encoding perceptual inferences. 

3  Perception 

3.1  Basic Facts About Perception

In physics, the notion of “observation” remains controversial, with “observers” defined by different 
authors as anything from a moving coordinate system (a “Galilean observer”) to a complex information 
processing system capable of (usually Bayesian) inference.37 Most agree, however, that an observer is a 
physical system, and that any physical system can be considered to be an observer. Often “observation” is 
understood simply in terms of a symmetric interaction between entities which thus “observe” each other 
(e.g. photons “observe” an electron passing through a slit) or between entities which are in a definite state 
of motion relative to some other state (e.g. a lamp that “observes” the movement of my hand when writing 
this paper38). In perception science, by contrast, one usually makes a difference between a mere “sensation” 
and the “perceptual representation” of this sensation, such as the difference between the recording of 
an optical signal on the retina and some additional neuronal processing of this signal in the brain. This 
additional processing is modeled as inference, typically Bayesian inference.39 Alternatively, proponents of 
“direct” perception theory argue for a direct relation between environmental input and behavioral output 

37 For an overview and arguments favoring the latter, information-processing view, see Fields, “If physics is an information 
science, what is an observer?” 
38 Rovelli, “Relational Quantum Mechanics”, 1641.
39 Perception as Bayesian inference is the standard view in the field, see e.g. Knill and Richards, Perception as Bayesian 
Inference. The notion of “active inference” embeds this standard view within a larger framework describing a behaving organism 
within a responsive world, see Friston, “Life as we know it”. We return to this in Sect. 5.
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of the organism, thus dropping the concepts of information processing, inference, and representation from 
perceptual theory.40 In any case, proponents of representationalism or direct-perception theory have to 
account for the difference between a perception and a mere physical recording as can be illustrated, for 
example, by the possibility to misrepresent, or in direct-perception terms, behave maladaptively in response 
to an environmental signal. Without taking up the ontological baggage of either representationalism or 
direct-perception theory, we shall liberally use the notion of “representation” in the sense of a collectively 
stable state generated by the dynamics after perturbation in a (probabilistic) dynamical system. This does 
not imply that there is no sense in speaking of “information processing” that is going on in the system, nor 
does it mean that perception is fundamentally “dis-embodied” and purely abstract. We furthermore adopt 
the following set of assumptions:

1. Perception is an ill-posed problem. The perceptual system constructs a coherent percept based on the 
stimuli it receives. The mapping from stimuli to percepts is, however, not unique. For any set of stimuli, 
there are many percepts which are consistent with this set. The perceptual system has to choose the 
“right” percept out of many possible ones. Perception is thus akin to a form of inference which is 
abductive rather than deductive. 

Perception is furthermore a constructive process, it creates “objects that are not really there”. 
Visual illusions are particularly suited to illustrate this. In neon-color spreading, a subject perceives an 
illusionary glowing disk even though no corresponding shape is explicitly part of the image the subject 
perceives (Figure 3). The visual system is “filling in” the glowing disk based on the stimuli it receives 
and the experimental setting. 

Figure 3. Neon-color spreading. A glowing disk is experientially filled-in by the visual system.

2. Perception is probabilistic. In the course of the last century two approaches in psychology have competed with 
each other.41 In a logic-based account, reasoning cognition is modeled along the execution of deterministic 
rules. A second approach models cognitive processes probabilistically. To each possible outcome in a 
psychological experiment, one could associate a probability. For example, in word recognition to each word 
one can assign a probability on the basis of presented letters on a piece of paper. Given a flawless text, this 
task is rather trivial. However, when letters are missing, this might quickly become difficult. Does the word 
sh*p refer to a vessel or a place where one could buy things? In psycho-physical experiments devised by 
Richard Warren, it was demonstrated that subjects report different percepts based on the same partially-
masked phoneme (“$eel”) they hear in different contexts (sentences):42

What subjects actually heard What subjects believed to have heard

The $eel is on the shoe The heel is on the shoe

The $eel is on the car The wheel is on the car

The $eel is on the table The meal is on the table

The $eel is on the orange The peel is on the orange

40 Gibson, The Ecological Approach to Visual Perception; Chemero, Radical Embodied Cognitive Science.
41 Mumford, “Pattern Theory”, 2.
42 Warren, “Restoration of missing speech”. 
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Note that the solutions that subjects could come up with are mostly ambiguous. Different meanings are in 
principle consistent with a given (gapped or distorted) sequence of letters. Nevertheless, subjects are able to 
approximately “choose” the “right” percept. The probabilistic approach is inherently related to the idea that 
psychology presents us with ill-posed problems. The probabilistic approach has been successfully applied 
in linguistics since the 1950’s. Since the 1980’s it came to dominate AI and perception research. It is also 
worthy to note that the word-recognition task implies a high degree of contextuality. It is the context – and not 
knowledge about the “inherent” meaning of a word – that lets us get the message approximately right.

3.2  Perceptual Inference

Mathematically, the process of perception can be modeled as abductive inference using Bayesian probability 
theory. The perceptual system chooses from a variety of “interpretations”, each consistent with an input 
signal. A posterior probability can be assigned to each interpretation, given the input. Using Bayes’ rule, 
it can be recovered from multiplying a likelihood function that assigns a probability to each input given a 
particular percept with the prior probability of that percept:

 a= × = ×( )( | ) ( | )  ( | ) ( ),
( )

p xp x i p i x p i x p x
p i

 (3)

where a = p(i) = ∑x p(i|x)p(x) is a normalization constant, which can be neglected when comparing different 
posterior probabilities given the same input. The way this scheme is (approximately) realized in a living 
organism can be quite complicated. In vision science, it is often assumed that the space of percepts is 
homomorphic to the space of states in the world, and thus the likelihood function could be given the 
interpretation of “a mapping” from world states to input states, e.g., the optical projection from a 3D 
world onto the retina of the eye. Such an approach to visual perception is typically called an “inverse-
optics”43 approach, since the task for the visual system is to undo the effects of optical projection. Given 
such an interpretation and knowing likelihood and prior probability, it is possible to calculate posterior 
probabilities using the Bayesian scheme above. To determine which percept x is selected based on the 
posterior distribution, one usually introduces a “loss function” which describes the consequences of 
making an error in the process of choosing an interpretation. The easiest and most principled loss function 
is given by a delta-function, centered around the maximum of the posterior distribution (the so-called 
“MAP” - estimate). Other, more involved choices are possible.44

However, in an evolutionary setting, the assumption that world states and scene interpretations generically 
are homomorphic has been shown to be wrong,45 and we thus refrain from it. For a perceptual network we 
assume that the “sensory input” i corresponds to the initial state of a certain (sub-)set of nodes and “perceptual 
interpretations” x correspond to the stable states of the network. On the network level, the set of rules {Rj} gives 
rise to a “perceptual strategy”, and knowing the rules {Rj} and the network’s topology, we could compute posterior 
probabilities directly based on priors defined on inputs to maximize a quantity that represents a “fitness payoff” 
with respect to the problem at hand. What the network sees is not merely “given” by its input but by the utility of 
its strategy. We thus introduce a “payoff-function” defined on the space of inputs and perceptions:

 F : I X → [0,1],(i,x) α r ∈ [0,1]. (4)

For convenience, one often chooses the interval [0,1] for payoff values, but in general any finite interval 
defined on the positive Reals will suffice. Perceptions, on this account, do not serve as truthful representations 
of input but as useful guides toward maximizing payoffs. 

With this definition of a payoff-function one could calculate an “expected payoff” for a given set of 
updating rules {Rj } and graph G:

 = å
,

( , ) ( , | { }, ). j
i x

F F i x p i x R G  (5)

43 Palmer, Vision Science, 23.
44 Mamassian et al., “Bayesian Modelling of Visual Perception”, 20.
45 Prakash, “Invention of Structure” 111, and references cited therein.
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We want to infer the “average best” perceptual strategy implemented by a network. Since the probability is 
parametrized by the set of rules {Rj}, we need to adjust the rules in order to maximize the expected payoffs 
(assuming an otherwise fixed topology of the graph G): 

 ( ) æ ö
Þ = = ç ÷

è ø
åopt

,
{ } argmax argmax ( , ) ( , |{ }, ) .j j

i x
R F F i x p i x R G  (6)

From now on we will drop the conditional dependence on {Rj}  and G for simplicity when writing fitness 
payoffs.

3.3  Mutual Information

In our model we assume a particular form of the payoff function which equals the logarithm of the 
probability p(i,x) divided by the probability of the marginal probabilities p(i)p(x). This results in a mutual 
information (MI) between X and I:

 
æ ö æ ö

º = =ç ÷ ç ÷è ø è øå å2 2
, ,

( , ) ( | )( , ) ( , ) log ( | ) ( ) log
( ) ( ) ( )i x i x

p i x p x iF MI I X p i x p x i p i
p i p x p x

 (7)

 = =å ( ) ( | ) ( ) .( ) ( | ) ( )( )KL KL ii
p i D p x i p x D p x i p x  (8)

In other words, the payoff-function is set equal to the difference in self-information between a posterior 
probability p(x|i) and a marginal probability p(x). More intuitively, F  could be thought of as quantifying 
the information that is present in the asymptotic state about the initial state with the Kullback-Leibler  
divergence DKL. 46 

The mutual information is bounded above by the entropy H(I):

 MI(I,X) ≤ H(I), (9)

so the maximum of mutual information would be obtained in a case where the perceptual rule leads to 
a one-to-one mapping from inputs to perceptions. In any realistic setting (e.g. where the space of inputs 
largely exceeds the state of percepts) this will likely not be the case, and we have to relate input and 
perception probabilistically and optimize Eq. (8) instead. Already a noisy input (such as in the example of 
speech recognition above) would make this a stochastic problem, which would generally lower the maximal 
value of mutual information achievable in the network. To each sensation there exist several perceptual 
representations which all have a certain posterior probability, which is specified by the network’s evolution 
under noise (here “noise” is taken to lead to a perceptual “misrepresentation” of the input). 

On this account the “goal” of perception is being able to distinguish as best as possible between different 
inputs. Perception, thus understood, amounts to the ability to recognize differences in the world (or more 
generally: perception is the ability to recognize “differences that make a difference”47 for fitness). Finding a 
set of rules and a topology defined for individual agents which maximize the mutual information between 
perception and input to the network is the “perceptual problem” that needs to be solved by our model. For 
this, we can borrow techniques to search through the rule-set using algorithms from machine learning. 
The setup of the problem suggests evolutionary programming techniques such as genetic algorithms48 as 
discussed below.

46 See Amari, Information Geometry, 11. Alternatively, to relate this to other concepts in unsupervised machine learning, 
maximizing the mutual information introduced here corresponds to maximizing an expected log-likelihood for the probabilities 
p(i,x) parametrized by the rule set {Rj} and defined on the graph G. This formulation makes it in principle amenable to 
optimization techniques involving calculating gradients of a “free-energy” function. However, in the more general setup where 
arbitrary (non-differentiable and non-continuous) payoff functions are used, such methods are no longer straightforwardly 
applicable.
47 Bateson, Mind and Nature.
48 Holland, Adaption in Natural and Artificial Systems.
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4  Preliminary Experiment: Perceptual Strategies

4.1  Model and Methods

We tested the performance for 3-bit inputs distributed on the first 3 nodes of a perceptual network with N = 
16  agents on a graph G with topology A. The system was initialized in the state X=(i[1], i[2], i[3], 0, ..., 0) and 
was evolved according to a set of rules {Rj}. The attracting sets were recorded for each input. This allowed 
us to construct a conditional probability p(x|i) defined on the space of inputs, which later informed mutual 
information (i.e. fitness payoffs). For each input bit, we introduced uncertainty by including a probability 
(p = 0.05) to flip an input bit during the initial phase of the evolution. 

We then used a genetic algorithm to determine the best set of rules in terms of fitness. Each rule is 
specified by the parameters 1 and 2 (see Eq. (10) below), which thus defined the “genes” of an agent. 
We evolved the network for 50 generations, each comprising 25 individuals. The best 20% were kept  
(l = 0.2), the remaining 80% were generated using a fitness-weighted sexual recombination procedure. We 
included a fixed mutation probability (p = 0.01) of randomly shifting the values of 1 and 2 by ±1. To make 
our model biologically more plausible, we assumed a refractory period of 1 for each agent, which means 
that an agent – after it has been excited – cannot be excited immediately in the next round. 

Since we wish to work with a perceptual rule which could handle changes in the size of the neighborhood 
structure,49 we chose a rule that assigns the next state of an agent solely dependent on the number of 
messages it receives, independent of source. In other words, at the basic level our agents do not have the 
representational capacity to label messages with the “name” of their sender.50 More concretely, we assume 
a rule of the following type:

 
m mÎ

¢
ì =ï= í
ïî

, ,1 21 if [ , ] and 0
, 

0 else
j jj j

j

m
x

x
 (10)

with 1 £ m1,j £ deg (j) and m1,j £ m2,j £ deg (j) where messages mj are computed as mj = (Ax)j and deg(j) is the 
degree of the j-th agent. In total there are 1/2⋅(deg (j) + 1) deg (j) possible rules per agent. If we consider a 
network of N perceptual agents, each potentially following a different rule, there are:
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different possibly strategies of the network (assuming the degree per agent is roughly constant); an 
enormous space of strategies. So, even though the rule expressed in Eq. (10) is quite simple, the rule space 
scales exponentially with the size of the network. 

In this investigation, we optimized the set of rules {Rj} for a fixed topology defined by the graph G which 
either resembled (i) a 4 ´ 4 grid, (ii) a small world/scale free (SW/SF) network (with initial states forming a 
fully-connected community), constructed using the Barabási-Albert method,51 or (iii) a complete graph where 
every agent is connected to every other agent. We also tested our results against randomly generated (Erdös-
Renyi) networks with sparse ( )=deg /10N  and dense ( )= -deg 1N  average degree distributions. For 
simplicity, links were assumed to be bi-directional, i.e. agent j both sends and receives a message from agent k.

We also compared the evolved rule-set to a variant of the “majority rule” where an agent transitions from 0 
to 1 if and only if at least half of its neighbors are in state 1, else it goes to 0. The majority rule has been found to 
be very efficient in solving the “density classification task” for a cellular automaton when defined on small-world 

49 Technically, an object-oriented programming framework allows for this in contrast to a representation using matrices of 
pre-defined sizes. But for simplicity we refrained from this option.
50 Note that it is plausible that networks with higher representational capacity do develop such a “labeling” which might not 
be given at the elementary level of single (“1-bit”) agents.
51 Albert and Barabási, “Statistical Mechanics of Complex Networks”, 71.
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graphs.52 The density classification task is highly global but involves only a single rule at the local level. It could 
thus be regarded as benchmark test for local and parallelized computational architectures. 

Another fixed rule which we used for comparison is the “max-thresh” rule, where the threshold for 
updating to 1 is set to the degree of the agent:

 
ì ¢= =ï¢ = í
ïî

1  iff  deg( ) and 0
.

0 else
j j

j

m j x
x  (12)

So, for example, if an agent has 3 other neighbors to communicate with, the state transition takes place if 
and only if mj = 3. 

4.2  Results

Results for some exemplary networks are given in Table 2. The rules which evolved after 50 generations of the 
GA favor “interface strategies”,53 which in this context means that generically there is no similarity between 
input states and asymptotic states of the network (or the individual perceptual agents). The perceptual 
states of the network do not mirror any structure in the input other than a probabilistic relationship given 
by the posterior p(x|i) which informed fitness payoff (= mutual information). 

By contrast, the (fixed) majority rule mirrors the structure of the messages of each agent.54 While it gave 
satisfying solutions for some topologies, it was generically not able to compete with a collection of rules {Rj} on a 
random topology which implemented an interface strategy. The max-thresh rule generically solved the problem 
badly except for particular topologies. Again, interface strategies quickly out-competed the max-thresh rule.

Table 2. Results for some randomly initialized networks, defined on a fixed topology visualized in the left column 
(input states are highlighted in red). The perceptual rules for the fittest strategy after the genetic algorithm are 
displayed in the middle column by the values of m1 and m2 for each agent. Averaged values for mutual information 
(fitness) for the initial and final population after the GA and results for the majority and max-thresh rules are 
given on right column (the maximally achievable value is 2.14.) 

Network, N = 16 Perceptual rule after GA Mutual information (std. deviation)

Grid, average degree =deg 3

1 2

2 2
2 3
1 3
1 2
1 2
4 4
4 4
3 3

,
1 3
1 1
3 4
3 3
1 2
3 3
1 3
1 1

m m= =

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

MI0 MIGA MImaj MImax thresh

0.45 (0.47) 1.57 (0.27) 0.36 0.36

52 Watts and Strogatz, “Collective Dynamics of ‘Small World’ Networks”, 442.
53 Hoffman et al., “Interface Theory of Perception”, 184.
54 More precisely, the majority rule says that the order of the states of the agent is homomorphic to the number of messages it 
receives. If the “number of messages” is considered to be an external “resource” for the agent, then the majority rule corresponds 
to a “critical realist strategy” in Hoffman et al., “Interface Theory of Perception”, 184.
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Table 2. (Continued)

Small world/scale free, average 
degree =deg 2.25

1 2

1 3
1 1
1 2
2 3
2 2
1 4
2 2
1 1

,
1 2
2 2
1 2
1 2
1 1
1 2
1 1
1 2

m m

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú

= =ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

MI0 MIGA MImaj MImax thresh

0.33 (0.39) 2.08 (0.17) 0.79 1.10

Complete network, average degree 

= - =deg 1 15N

1 2

1 13
1 14

12 12
14 15
7 14
13 15
4 5
2 4

,
10 11
14 14
1 6
1 10
1 5
3 12
11 11
8 15

m m

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú

= =ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

MI0 MIGA MImaj MImax thresh

0.38 (0.54) 2.10 (0.08) 0.0 0.0

Different behavior was observed for different topologies. SW/SF topologies lead to a quick emergence 
of “fit” strategies with comparatively low computational cost. For grids we found that the average fitness 
payoff increased more slowly compared to SW/SF graphs, although it sometimes gave good results, 
depending on the initial configuration of the network. While good and fast converging results have been 
obtained for complete graphs due to the intrinsic refractory period of the rule, computational time much 
increased (several hundreds of seconds compared to ca. ten seconds for small grids and SW/SF topologies). 
The SW/SF topology thus promises to offer a good compromise between speed and fitness. 

Similar results have been obtained for randomized graphs, where networks with sparse degree 
distribution behaved similar to the SW/SF networks (i.e. generically quick convergence and high fitness) 
and networks with dense degree distributions behaved similar to complete networks (i.e. high fitness but 
high run-time)
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4.3  Discussion and Outlook

In general, we found that the use of genetic algorithms leads to quick convergence on interface strategies 
embodied by a perceptual network. In the model outlined in the previous section, one could straightforwardly 
model perceptual inferences as strategies to compute mutual information between past and future states 
of a network of agents.

While we have optimized rules of the individual agents, the topology of the network has been fixed. In a 
next step, topology could be optimized as well and we sketch how one could proceed. First, realize that each 
column of the adjacency matrix could be interpreted as an “action” that each agent takes, i.e. as determining 
the set of other agents which it will communicate with in the next step. Second, the bi-directionality between 
nodes could be relaxed. Technically this means considering directed graphs, where the direction of each 
arrow specifies the direction of communication. Third, and similar as before, a genetic algorithm could be 
used to update the adjacency matrix, where each column is encoded by a “chromosome” associated to each 
agent of the network with “genes” representing the locations where messages will be sent to. Occasionally 
during the recombination process, a random mutation could flip a bit (i.e. a gene), that is, create or destroy 
a new link in the adjacency. 

What would one expect to happen? As previously indicated, small world/scale free topologies present a 
good compromise between speed and computational cost and are thus expected to be the favored outcomes 
of a learning (evolutionary) process which optimized the topology (actions) of the network. Such networks 
already hint at the presence of sub-networks of different sizes and different perception-action capacities, 
e.g. “hubs” which integrate a lot of incoming information and/or send a lot of messages into the network. It 
is furthermore likely that a single “node” (network) on a coarser level is itself composed of many interacting 
sub-networks (“hubs within hubs”). This would indicate that our model is consisting of a hierarchy of 
heterogenous agents, a fact which is, however, observer-relative and depends on the coarse-graining 
chosen (on the elementary level the network is just composed of 1-bit agents).

A further developed model could be conceived along several lines. First, a more sophisticated – and 
heterogenous – model of the refractory dynamics could be used. Agents could have varying periods between 
excitable states. Second, a non-synchronous updating scheme could be employed. Ideally, the network 
would feature a combination between asynchronous updating and synchronous updating schemes for 
several groups of agents. Third, probabilistic updating could be used. In our model, probabilistic inference 
was restricted to initial uncertainty, the rules and topologies were otherwise deterministic. The natural 
interpretation of probabilities in the adjacency regards the interaction probability between adjacent nodes. 
Edges with probability close to 1 represent nodes that almost always exchange signals, whereas edges 
with probability close to 0 represent nodes that almost never communicate. In a probabilistic setting with 
low fluctuations around a central value, the network topology might play an even bigger role than in the 
previous subsection. We conjecture that SW/SF graphs are robust with respect to small fluctuations, as has 
been demonstrated for many empirical networks which approximate such a topology.55 This would set SW/
SF topologies further apart from, e.g., lattice structures.

The results have not been assessed rigorously in terms of statistics and should only convey a preliminary 
sense of what is possible with this method of inquiry. 

5  Ontology
We have demonstrated in the last section how to couple computational optimization techniques with a 
simple toy model to address the following two questions: 1) how can a model premised on the experiences 
of individual agents lead to stability of networks and 2) how could the dynamics of a network of such agents 

55 Albert and Barabási, “Statistical Mechanics of Complex Networks”, 49ff. It is of particular interest in the present context that 
both signal transduction networks in biological cells and functional networks in mammalian brains exhibit SW/SF structure; 
see Agrawal, “Extreme self-organization in networks constructed from gene expression data”; and Sporns and Honey, “Small 
worlds inside big brains”. 
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be interpreted as perceptual inference? We furthermore showed how our networks could be optimized to 
efficiently solve a perceptual task. Our results are consistent with findings from research on “complex 
adaptive systems”.56 We also found consistency with previous work on interface strategies from perception 
research. 

The first question above is ontological. Its solution involved the ability of finite networks to reach an 
asymptotic state, either stationary or as part of an attracting set, often in very short time. The answer to the 
second question involved the use of optimization techniques applied to a generic and initially randomized 
model. Given the particular architecture of our system, we used a technique known as genetic algorithms. 
Conceptually, genetic algorithms resemble biological learning on a genetic time scale. But nothing 
specific depends on this choice of optimization technique. Other techniques such as gradient descent, 
energy minimization or simulated annealing seem in principle viable, given the right architecture (e.g. 
continuously valued state functions and topologies). It is worth noting that these procedures all operate 
on relations between nodes: it is the network itself that evolves. “Learning” in this sense is a collective, 
network-level, not an individual, node-level phenomenon.

While our preliminary results demonstrate how philosophical thinking and artificial intelligence 
research could thus be fruitfully coupled, there are other questions pertaining to agency that have not been 
addressed. Below, we will select some of these questions and discuss them briefly. Importantly, the goal of 
this section is not to argue that by doing AI research long-standing philosophical puzzles could be resolved. 
Instead, AI provides us with a constructive methodology by which we could investigate philosophical 
questions. Investigating such questions might subsequently enrich many of the methods in AI research, in 
particular when interested in artificial general intelligence – e.g. for autonomous robotics – rather than in 
building applications systems for well-defined, highly-constrained task environments. 

Exemplary questions pertain to the status of embodied mentality and action, learning, and 
consciousness. We conjecture that this combination of philosophy and AI research allows general principles 
of intelligence to emerge from a “quasi-empirical” investigation under philosophical scrutiny.

5.1  Decisions and Agency 

We modeled our networks on psychological agents. The elementary entities of our networks are agents 
that integrate and process information (they “perceive” it). While networks produce stable patterns and 
solve particular tasks, they would intuitively not yet count as true psychological agents. One distinguishing 
property of such agents is their ability to make decisions related to their (conscious) perceptions. The 
original formulation of Hoffman and Prakash and Fields et al.57 featured an explicit mode of processing 
which resembled a basic notion of “decision” that each agent makes, based on its current experience. While 
introducing an explicit decision-making mechanism into our networks is in principle straightforward, there 
are at least two preconditions that have to be met: i) the decision space must be smaller or equal in size 
than the perceptual space if a (rational) decision is to be solely based on an agent’s perception, and ii) 
such a decision-mechanism should involve a probabilistic (undetermined) component. A way to implement 
such a mechanism in our basic model would thus be to assign to each elementary agent a probability to 
decide on one of two outcomes. On the network level this would correspond to 2N possible states, each 
with a possibility that is the product of individual decision probabilities. For N = 10 elementary agents, this 
would already generate 1024 possible states reachable through such a decision-mechanism. Assuming that 
each agent decides probabilistically with (the same) probability p on one of two possible outcomes and 
assuming, again, that only the total number k of previous experiences (e.g. (0,0,1,1) being equivalent to 
(1,0,0,1)) is important, the probabilities on the network level would be given by the binomial distribution: 

( ) ( ) -
-= 1 .

N kN k
decision kp p p

56  Mitchell, Complexity. 
57 Hoffman and Prakash, “Objects of Consciousness”, 6; Fields et al., “CA-networks”, 188.
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One sees that already some very austere assumptions (elementary agents decide equally; only the number 
of previous experiences matters) could generate a huge complexity on the network level. This would be 
even more drastic when those assumptions were relaxed. Even single biological cells, for example, have 
memory not just of the number but the content and consequences of previous experiences.58 To model 
such systems, some elements of the perceptual space X must be set aside to represent memories instead of 
current percepts.59

Real psychological agents have a body that acts as a boundary which lets them interact with their 
environment. In previous sections, we made the simplifying assumption that asymptotic states of the 
network, after manually putting the network into an initial state, directly informed our payoff-function. 
In a more realistic scenario, this is no longer the case: networks are not manually put into an initial state 
and asymptotic states are not directly read out. As a remedy, one could supply the network with effector 
organs by which it could interact with other networks or its environment. Similarly for sensations, one 
could introduce sensory organs to “inform” the network. One could thus think of embedding such networks 
into an artificial “body”60 and placing them into an artificial environment. In other words, one would have 
created an artificial agent – a robot – whose control architecture is a perceptual network. Couplings should 
be local. However, control will be determined globally via the (asymptotic) state of the network. One could 
look into biology to infer a basic set of “actions” for such agents. These would likely include “movement”, 
“consumption”, “fight”, “flight”, and “reproduction”. Such different behaviors should be afforded by the 
effector organs which one gives to the artificial agents. Similar considerations apply to sense organs that let 
agents “see” (and induce a sense of space), “hear” (induce a sense of succession) and “feel” (induce a sense 
of touch). A subset of states of the control-structure (the network) would then correspond to “emotions”, 
“moods”, “internal perceptions”, or “epistemic feelings.”61 

However, before we could tackle particular problems within this framework, we need to (re-)consider 
some basic ontological questions. First, providing networks artificial bodies, while in principle adequate, 
seems to be an ad hoc solution from an ontological standpoint. The embodiment as described above seems 
to be a solution to a particular problem (that of making our networks more “agent-like”), but not a principled 
one. It is not necessitated by our model. The ontological puzzle related to agency, therefore, is whether one 
could derive “bodies” within the sparse ontology underlying our model.

A possible way to approach this puzzle is as follows. Instead of “injecting” sensations and actions 
into the network by constructing an artificial agent with sense and effector organs, one would want to 
identify such organs with certain regularities in the network’s dynamics. In this setting, an artificial agent 
would correspond to a sub-network embedded in a larger network, and the basic set of actions identified 
above would correspond to particular (local) sub-patterns in its state. Sensations would correspond to 
the messages that the sub-network receives from other sub-networks, including an “environment” sub-
network with slowly varying state. “Movement” through the network could be construed as adjusting the 
connectivity between sub-networks, i.e. sub-network scale learning, though how such a process would 
result in a sense of “space” remains to be worked out. Sub-networks could seemingly “consume” or even 
“kill” each other by changing their respective states (recall that we chose the all-0-state to represent a 
stationary state of making no experience, i.e. “death”). “Reproduction” could be understood as pattern-
emergence after (local) interaction between sub-networks, though again, how much duplication is needed 
to constitute “reproduction” remains to be determined. Flight-or-fight is a particular decision-strategy on 
the level of sub-networks. The senses of space, succession, and touch would, in a further development 
of this approach, correspond to representational strategies which let sub-networks control their actions. 
Whether such an approach is feasible within a minimal ontology remains to be seen.

58 Baluška and Levin, “Cognition throughout biological systems”; Keijzer, “Evolutionary convergence”.
59 Fields et al., “CA-networks”.
60 Note that this wouldn’t yet count as a “living body”, which would furthermore require that its bodily integrity follows from a 
self-organized process of self-assembly and direction of energetic flows; cf. Boden, “Is Metabolism Necessary?”, 236. 
61 In AI and particularly developmental robotics, these issues are considered under the rubric of “intrinsic motivation”; for a 
review, see Oudeyer and Kaplan, “What is intrinsic motivation?”. The general issue of affect has become significant enough to 
warrant its own specialty journal from IEEE; for the relevant historical development, see Picard, “Affective Computing”.
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5.2  Fitness and Learning

Fitness plays an important role in our models, since fitness, and not “truth” (i.e. correspondence between 
network-states and inputs), determines whether a particular network is apt or not. Fitness was calculated 
from a payoff-function defined for asymptotic states and inputs (cf. Section 3.3). This is, again, an ad-hoc 
assumption which needs to be revisited. AI architectures too could be distinguished along the way fitness 
(or “cost” or an “objective function”) is defined from the outset. To date, truly general AI frameworks that 
do not rely on a pre-given function (e.g. a “cost”-function as in supervised learning) or a “truth”-criterion 
encoded in the detection or reproduction of statistical regularities in the input (e.g. feature extraction as in 
unsupervised learning) are still in their infancy. Moreover, not every strategy which is good in isolation is 
good when competing against other strategies. Such an approach to learning thus suggests concepts from 
evolutionary game-theory and reinforcement learning. Reinforcement learning is the most “biological” 
learning paradigm in AI research, and is particularly suited to model environmental interactions and 
games. The key to any such optimization is “learning from experience”. Feedback is not directly given to 
the network by a cost function but as a response, detected via perception, to the outputs generated by the 
environment. How to implement systems that learn autonomously by exploring their environments is a 
central question of developmental robotics.62

An important fact, related to the difference between unsupervised and reinforcement learning, 
is that the environment itself may consist of (one or more) other agents. If the environment is large and 
effectively independent from these agents’ actions, fitness consequences can often be written as a result of 
a (time-independent or only slowly time-dependent) payoff function. If this is not the case, however, the 
fitness consequences of the agent’s outputs are themselves dependent on the strategies taken by the other 
agents. This difference is similar to that between optimization problems which can be exactly specified 
mathematically without knowledge of the current states of the network (e.g. finding the shortest path 
between two points on a map) as opposed to the much more intriguing problems where only a rough goal 
is specified in advance, but the actual feedback is determined dynamically (e.g. navigating a self-driving 
car, where the desired location is known but “success” depends on many, in part unpredictable factors). 
Problems of the latter type are generally considered in terms of “cooperative” or “distributed” systems 
within AI and robotics.63 They also arise in the development of operating systems or interpreters.

5.3  Mind and consciousness

Finally, the “gold standard” for counting as agent is to have mind and, ultimately, consciousness. Since 
perceptual networks are equivalent to Turing complete systems,64 it is expected that the framework 
could inform us which non-Turing-computable processes (if any) need to be invoked to study mind and 
consciousness. Some have argued that mentality evolved as a feature of complex biological systems to 
solve various control problems (such as self-regulation, synchronization, or preventing over-adaptation to 
specialized problems) that could not be solved in an algorithmic (“robotic”) fashion alone.65 Other claims 
regarding the non-computational nature of consciousness involve, for example, mathematical problem 
solving, understanding, or the process of “comprehension”66 – all instances of “insightful” problem solving. 

62 For a range of approaches, see the papers in Baldassarre and Mirolli, Intrinsically motivated learning.
63 For an overview, see Parker, “Distributed intelligence”. 
64 This can be inferred from the fact that perceptual networks could in principle be conceived such as to reproduce other 
frameworks, which are known to be computationally universal. For example, the perceptual mappings embodied by a node in a 
perceptual network could be used to implement a universal logic gate (such as the NAND). Given the capacity to arbitrarily route 
signals, Turing completeness could be inferred from there. Note that this is very different from actually showing how particular 
computations are carried out by such systems. Note also that computational universality is not a very rare property: Even very 
simple systems can be computationally universal (Wolfram. A New Kind of Science, 716-717). 
65 Jordan, “The Wild Ways of Conscious Will”; Augustyn, “Biological Mentality”.
66 Penrose, The Emperor’s New Mind; Searle, “Mind, brains, and programs”; Faggin, “Requirements”.
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All these proposals emphasize a particular aspect that is deemed necessary for consciousness and postulate 
a concept of consciousness that would intuitively be called “mind-like” as opposed to a mechanical (purely 
algorithmic) form of inference (“when encountering this symbol, then do this, else do that” or its stochastic 
extensions). Perceptual networks could quasi-empirically provide insights here. If one could state these 
claims precisely in the language of the model, it should be demonstrable whether or not a solution to such 
a (control or insight-related) problem could be found using perceptual networks. And if not, exactly which 
capacity should be introduced at the basic level in order to do so could be determined.67 Even if finding such 
a solution involved conceptually straightforward optimization techniques, it is plausible that any solution 
(i) is highly improbable and could otherwise be only reached accidentally (a “measure-zero event”), (ii) is 
emergent with respect to any local rule-following behavior of nodes, and (iii) would not be described as a 
“number-crunching” procedure but rather as an “creative act” of the network (due to, e.g., the plasticity 
of network topology). Such a solution might, for example, involve global coherence that results from an 
unpredictable local adjustment of the individual strategies of elementary units which happens “on the fly”: 
an interplay between global and local constraints in order to act “mindfully”. 

This relates to the previous notions of learning or to “habituation”. When a network randomly tries 
out some solution to a problem and gets feedback on whether it was successful or not, this, together with a 
mechanism for learning, could lead to “knowing” when to act a certain way. One could furthermore conceive 
of networks that, while not able to generally solve such a problem, can implement a learning strategy 
that finds a “good enough” solution to the problem of choosing the right strategy when necessary. (And in 
particular the biological setting suggests that it is really only about “making it better than my competitor”.) It 
naturally follows from the fact that such a learning process depends on the individual history of experiences 
that strategies that have been successful in one situation will perform poorly in a different situation, and this 
is exactly what we also see in nature: a way of thinking that was apt in a particular situation, is completely 
useless in another. Conscious beings can learn to (intuitively?) choose the right way of conceptualizing 
things and have the right kind of “intuition” or “insight”. Machines, at this date, cannot.

These questions raise two issues that are seldom addressed, but deserve further consideration. First is 
the (“computational”) role of the environment. Humans and other organisms routinely store information in 
the environment, e.g. in the form of books, but also houses, agricultural plantings, etc. This information is 
relatively stable and does not have to be remembered. Only the means of accessing it must be remembered. 
From the present perspective, what is important is that such environmental information effectively imposes 
a top-down constraint on the behavior of not just the encoding agent but other agents sharing the same 
environment. When the environment itself is allowed to process (i.e. alter in some way) this information, 
this constraint could be conceived of as computational process.68 Second, and related, is that from a 
practical perspective, we typically do not want AI systems or other artifacts to be “creative” in the sense 
of responding unpredictably to environmental states. The exploration of “free” systems that behave in 
unpredictable ways has been largely confined to simulations. 

We see from these brief discussions that AI research could profit enormously from a more “biological” 
approach to intelligence and a thorough discussion of conceptual issues from philosophy in order to 
advance the state of artificial general intelligence, in particular with respect to agency and the potential 
non-computational nature of consciousness. 

67 For example, it could be the case that a basic capacity of “understanding” has to be granted to even the elementary units 
of the system to solve such problems. Similarly, when able to use irrational numbers as weights, RNNs have been shown to be 
able to have a capacity of hypercomputation (Siegelmann, “Neural and Super-Turing Computation”), that is, they would exceed 
the computational powers of Turing machines. Right now, this seems to be more of a hypothetical rather than actual possibility, 
but it illustrates the point that “what can be done” with a particular architecture depends on the capacities we “inject” into 
it (cf. Copeland, “Hypercomputation”, 462). In particular, restricting “computational states” to states that can be measured at 
finite resolution or otherwise determined by observation collapses the computational capability back to Turing; see Fields, 
“Consequences of nonclassical measurement”.
68 This issue is partially addressed within the extended mind framework in cognitive science, e.g. Clark and Chalmers, 
“Extended mind”. It is more thoroughly addressed by the idea of niche construction in evolutionary biology, e.g. Keijzer, 
“Evolutionary convergence”.
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