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Abstract: Descriptions of measurement typically neglect the observations required to identify the
apparatus employed to either prepare or register the final state of the “system of interest.” Here,
we employ category-theoretic methods, particularly the theory of classifiers, to characterize the full
interaction between observer and world in terms of information and resource flows. Allocating a
subset of the received bits to system identification imposes two separability constraints and hence
breaks two symmetries: first, between observational outcomes held constant and those allowed to
vary; and, second, between observational outcomes regarded as “informative” and those relegated
to purely thermodynamic functions of free-energy acquisition and waste heat dissipation. We show
that breaking these symmetries induces decoherence, contextuality, and measurement-associated
disturbance of the system of interest.
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1. Introduction

Measurements of macroscopic systems—indeed, any observations made in any setting,
however informal—pose a problem in quantum theory because they appear to violate the theory’s
fundamental symmetry: unitarity or conservation of information (see [1,2] for comprehensive reviews).
Irreversibly recordable observational outcomes are, in particular, classical by definition, as emphasized
by Bohr [3] and many others. Obtaining such classical outcomes, however, requires physically
interacting with the world. What is the relationship between the classical outcomes that observers
obtain and the physical interactions via which they obtain them? To investigate this question, we turn
to a relatively-neglected aspect of measurement: the identification, by the observer, of the physical
system being observed. We are interested, in particular, in how an observer identifies macroscopic
systems such as laboratory apparatus.

The ability of observers to identify macroscopic systems is generally taken for granted even
when discussing systems with explicitly quantum properties (see [4] for a recent review). Schrödinger,
for example, had no problem identifying the steel chamber containing his cat, although it contains,
and may well itself be a component of, a quantum system in an entangled state [5]. More tellingly,
Wigner had no trouble identifying and conversing with his friend, although his friend is by
assumption a component of a quantum system in an entangled state, the other component of
which may be as large as an entire laboratory [6]. When performing a Bell/EPR experiment,
Alice and Bob similarly have no trouble identifying and reading their respective apparatus pointers,
although these pointers are components of a spacelike-extended quantum system in an entangled
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state [7]. Appeals to system–environment decoherence [8–10] or state broadcasting [11–14] contribute
nothing to understanding the ability of observers to identify such macroscopic systems, as they
assume a priori a fixed and known (in the case of state broadcasting, by multiple observers)
system–environment boundary [15–17]. Modifying quantum theory by introducing a physical
“collapse” mechanism and hence an “ontic” classical realm at large scales (e.g., [18–20]) similarly
does not help, as the system-identification problem also arises, and arises for the same reasons, in a
classical setting [17].

A second common assumption of descriptions of measurement, whether quantum or classical,
is that observers are supplied with whatever free energy they require to make and record their
observations, including the observations used to identify the system(s) of interest, by mechanisms
that are entirely independent of the systems or processes being observed. The thermodynamic sinks
into which observers dump waste heat are similarly assumed to be independent of the systems or
processes being observed. These assumptions render the “unobserved environment” more than just a
resource for decoherence; this environment, or some larger system of which it a component, must also
supply free energy and dissipate heat, and do both in ways that do not disturb the observations.

Quantum theory provides a formal description of the interaction between two systems that
assumes nothing about the structures or properties of the systems beyond the representation of their
states spaces by Hilbert spaces. Here, we study the physics of system identification by observers
within a nonrelativistic quantum-theoretic framework making only two additional assumptions:

Assumption 1 (Separability). We assume a decomposition of U = “everything” into OW, where O is the
“observer” and W is the “world” with which the observer interacts. We require that the state |U〉 be separable
as |U〉 = |OW〉 = |O〉|W〉, at least up to some recoherence time that is long with respect to any time interval
of interest.

Assumption 2 (Finiteness). We assume the Hilbert space HU = HO ⊗HW has finite dimension dU =

dO + dW .

Assumption 1 is required for the idea of observation to make sense: the observer O can only
irreversibly change state after an observation, i.e., can only record an observation, if |O〉 is well-defined,
and the world W can only have an observable state if |W〉 is well-defined. Assumption 2 is required
for any physically-realistic observer O interacting with any finite local (i.e., “observable”) world W.

With these assumptions, we can write a Hamiltonian:

HU = HO + HW + HOW , (1)

where HOW is the O−W interaction, and can choose bases for O and W such that, with respect to a
time parameter t characterizing U:

HOW(t) = βkkBTk ∑
i

αk
i (t)Mk

i , (2)

where k = O or W, i = 1 . . . N for finite N, the αk
i (t) are real functions with codomains [0, 1] such that:

∑
i

∫
∆t

dtαk
i (t) = ∆t (3)

for every finite ∆t, kB is Boltzmann’s constant, Tk is k’s temperature, βk ≥ ln 2 is an inverse measure
of k’s average per-bit thermodynamic efficiency that depends on the internal dynamics Hk, and the
Mk

i are Hermitian operators with binary eigenvalues representing “questions to Nature” with yes–no
answers [21]. Here, O and W are each regarded as “observing” the other; the operators MO

i act on W,
while the operators MW

i act on O. To assure that O and W are “interesting” from the point of view
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system identification, we assume that the sets {Mk
i } of operators are large enough that, for any Mk

i ,
there is at least one Mk

j such that [Mk
i , Mk

j ] = 0 and at least one Mk
l such that [Mk

i , Mk
l ] 6= 0. The latter

requirement enables violation of the Leggett–Garg inequality [22] or, equivalently, Kochen–Specker
contextuality [23]. Hence, HOW is manifestly a quantum interaction. However, as noted above,
Equations (2) and (3) make no reference to either HO or HW , and are indeed independent of any
assumptions about the purity or separability of the states |O〉 or |W〉, the decomposition of either O or
W into subsystems, or the interactions, if any, between such subsystems.

The idea that nature “answers” an observer’s questions is classical, and implies an irreversible
state change [24]: each question from O that W “answers” transfers one bit from W to O and is paid for
by the transfer of βOkBTO from O to W. This situation is completely symmetric: each question from W
that O “answers” transfers one bit from O to W and is paid for by the transfer of βWkBTW from W to
O. Given Equation (3), the action required for k to transfer N bits in time ∆t is:∫

∆t
dt(ıh̄)lnP(t) = NβkkBTk∆t (4)

where P(t) = exp(−(ı/h̄)HOW t). Informational symmetry clearly requires βOTO = βW TW during
any finite ∆t.

The representation of observation given by Equations (2)–(4) simply describes an exchange of
energy for information. How then is identifying the system of interest distinguished, physically,
from measuring its state? The answer, we suggest, lies in two asymmetries: the asymmetry between
bits representing the “system of interest” and bits representing the “apparatus” and the asymmetry
between bits that are processed as “information about W” and bits that are processed as fuel, i.e., as free
energy to drive the processing of the bits considered informative, or as waste heat. These asymmetries
are imposed not by HOW but rather by the structure of HO (or, if viewing W as an observer, by HW);
hence, they are features of the information-processing architecture of O (or W). In what follows,
we make this suggestion precise as follows:

• We rigorously define a “system” contained within W, relative to O’s observational capabilities, by
employing the natural equivalence between binary-valued observables and binary classifiers as
defined [25] and the category-theoretic construction of a cocone (for review, see [26]).

• We formulate the distinction between system identification and pointer-state measurement as a
collection of equivalence relations on cocones, and showing that: (1) transitions between cocone
equivalence classes can be represented more generally as groupoid operations; and (2) these
groupoid operations correspond to entanglement swaps that result in O-relative decoherence [27].

• We show that such entanglement swaps can also be viewed as a context switches as defined [28–30]
and hence that Born-rule probability distributions over measurement outcomes are generically
context-dependent, i.e., generically display Kochen–Specker contextuality.

• We show that free-energy acquisition and waste-heat dissipation into the “environment”
component of W can generically have non-negligible effects on observational outcomes due
to entanglement swapping/contextuality.

We begin in Section 2 by providing a fully sequential model of interaction as (mutual)
measurement, and then coarse-graining time to generalize this sequential model. We then show that,
for finite U, the assumption of separability is equivalent to the assumption that O and W communicate
by classical communication, i.e., exchange of fungible [31] bit strings, via an ancillary, noise-free
classical channel. We provide a formal description of system identification in Section 3, showing that
any “system of interest” must have distinct reference and pointer components, that these components
can be represented as cocones over distinct sets of observables related by a predictability sieve [9],
and that distinguishing these components induces both component-scale decoherence and system-scale
contextuality. We then show in Section 4 that, if system identification is held fixed, system state is
generically vulnerable to disturbance as free energy is extracted from and heat is dissipated into the
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environment. We conclude in Section 5 by briefly discussing the implications of these results for
the architectures of “information gathering and using systems” (IGUSs, i.e., observers [32]) and the
relationship between decoherence and temporal coarse-graining.

2. Interaction as Mutual Measurement by O and W

2.1. Sequential Measurements

The simplest physical interactions, and hence the simplest measurements, are sequential: O selects
and deploys one operator MO

i during each interval ∆t, receiving in consequence one bit of information
from and transferring βOkBTO of heat to W. The interaction has the same description from W’s
perspective, only replacing superscripts O with W.

Following [17], sequential measurements can be represented by choosing the functions αk
i (t) to

be rectangular functions, but replacing the typical fixed duty cycle n with variable duty cycles nk
i (t)

“chosen” by k, i.e., determined by the unspecified internal dynamics Hk:

Πk(s,m)
i (t) =

m−1

∑
j=0

Π(t− (nk
i (t)j + s + 1/2)∆t) (5)

where the offset s, 0 ≤ s ≤ n(0)− 1 determines when Mk
i is first deployed, m is the total (finite but

unlimited) number of times Mk
i is deployed, and:

Π(t) =


0 if |t| > 1/2;

1/2 if |t| = 1/2;
1 if |t| < 1/2.

Each Π(i,m)(t) is a sequence, starting at t = s, of m unit-height rectangular pulses with width ∆t,
with separation given by nk

i (t)∆t. In this case, we have:

HOW(t) = βkkBTk ∑
i

Πk(s,m)
i (t)Mk

i (6)

with action still given by Equation (4).
The quantization of both action and information guarantees that time can always be fine-grained

sufficiently to render measurements sequential. It is convenient in the followings, however,
to coarse-grain time and view some measurements as carried out simultaneously (or “in parallel”).
Clearly, this is only possible for subsets of mutually-commuting measurement operators. In what
follows, we abuse the notation by employing MP

k to indicate either the kth individual operator as
above or the kth subset of mutually-commuting operators where the ambiguity presents no problems,
and the notation {MP}k for the kth subset of mutually-commuting operators where more explicitness
is called for. We reserve ∆t to indicate the interval required to deploy one operator and obtain one bit
as above and use τ to indicate an integer multiple of this interval during which a mutually-commuting
subset of operators is deployed and multiple bits are obtained.

2.2. Mutual Measurement Is Classical Communication

We can, as is now standard, think of O and W as communicating agents, i.e., we can think of HOW
as specifying a communication channel.

Theorem 1. With HOW given by Equation (2), the specified communication channel is classical, ancillary,
and free from classical noise.
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Proof of Theorem 1. No generality is lost by regarding the interaction HOW as specifying a strictly
sequential deployment of the Mk

i as in Equation (6). In this case, the action in Equation (4) transfers
one bit, corresponding to one of the two eigenvalues of the deployed operator MO

i , from W to O
during each interval ∆t, and one bit, corresponding to one of the two eigenvalues of the deployed
operator MW

j , from O to W during this same ∆t. This sequential exchange of bits constitutes classical
communication. There are no physical degrees of freedom other than those of O and W, thus the
communication channel is ancillary and free from classical noise.

While the exchange of bits between O and W is free of classical noise, the O−W channel flips each
bit, independently, with finite probability unless O and W are assumed to share a quantum reference
frame a priori [33], i.e., only if O and W share a basis. We assume such a shared basis for simplicity.
As an explicit example, suppose O and W alternate preparation and measurement of an array of
non-interacting qubits, as shown in Figure 1. Assuming a shared reference frame for sz preparations
and measurements, the encoded bit values are preserved in either direction.

Figure 1. Observer O and world W exchange bits via an ancillary array of non-interacting qubits.
Bit values are preserved if a quantum reference frame (here, a z axis) is shared a priori.

It is important to emphasize that while by Theorem 1 HOW can be considered to define a classical
communication channel, HOW is, as noted above, a manifestly quantum interaction that can violate
the Leggett–Garg inequality and display Kochen–Specker contextuality, as discussed in detail in
Section 3.5 below. It is also important to emphasize that, while the bits received by O provide a
representation, for O, of the state |W〉, they do not, by themselves, provide any information to O
about the decompositional structure of W, if any, and do not specify the internal Hamiltonian HW .
This is a simple consequence of linearity: we are free to choose any decomposition W = SE and write
HW = HS ⊗HE and HW = HS + HE + HSE without affecting the interaction HOW and hence O’s
observational outcomes in any way. We need, therefore, make no assumptions about the “ontic” state
of W as noted above; whether this state is separable or pure makes no difference to O’s observational
outcomes. What is of interest in what follows is solely the “epistemic” state of W for O; the notation
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“|W〉” is henceforward used strictly to denote this “epistemic” state. As above, the same considerations
apply to the representation of |O〉 by W.

3. System Identification and Measurement by O

3.1. Systems Require Reference Components with Invariant States

Identifying a system S in W requires distinguishing it from the rest of W, which we call the
“environment” E of S. In order for this S to have a measurable state |S〉, |W〉 must be separable as
|W〉 = |SE〉 = |S〉|E〉. Here, the recognition that |W〉, and hence also |S〉 and |E〉, are “epistemic”
states, i.e., states for O, is consistent with the general observer-relativity of separability [34–37].

The system S having a measurable state is, however, not yet sufficient for S to be identifiable
by O. In addition, S must have some component, which we call the “reference” R, that has a time
invariant, and hence reliably recognizable state. We must, therefore, be able to write S = RP, where P
is the usual “pointer” component of S, and require (O-relative) separability |S〉 = |RP〉 = |R〉|P〉,
where |R〉 is a time-invariant “reference state” used for system identification and |P〉 is the usual
time-varying “pointer state” that is of interest to O. This decomposition into R and P is illustrated
in Figure 2. Any identifiable macroscopic object, e.g., any item of laboratory apparatus, clearly must
support such a decomposition.

Figure 2. To be identifiable by observation, a system S must have a reference component R with a
time-invariant state |R〉. To be of interest for measurements, S must also have a pointer component P
with a time-varying state |P〉.

The decompositions W = SE and S = RP induce partitions of the set {MO
i } of operators

with which O interacts with W; suppressing redundant superscripts, we will write {MO
i } = {MR

j } ∪
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{MP
k } ∪ {ME

l }where all unions are disjoint. We will also write HOW = HOR + HOP + HOE, where HOR
implements system identification, HOP implements pointer-state measurement, and HOE implements
free-energy acquisition and waste-heat dissipation. Each of these interactions can, by Theorem 1,
be regarded as classical bit exchange. We write numbers of exchanged bits as N = NR + NP +

NE and inverse thermodynamic efficiencies as NβO = NRβR + NPβP + NEβE with the restriction
βR, βP, βE ≥ ln 2. As shown in Section 4 below, it is inequalities among the βR, βP, and βE that
break the thermodynamic symmetry of HOW . Without such symmetry breaking, R and P cannot be
distinguished from E, thus neither system identification nor pointer measurement can occur.

For S to remain identifiable over multiple rounds of measurement, the MR
j must satisfy the

commutation and predictability sieve [9] requirements:

∀j, k, [MR
j , MR

k ] = 0; ∀j, [MR
j , HOW] = 0. (7)

In general, neither the MP
k nor the ME

l will all commute. Failure of commutativity among the MP
k

is exemplified by apparatus calibration procedures [17], failure of commutativity among the ME
l by

such events as laboratory power failures.

3.2. Reference Components Can Be Represented as Cocones over One-Bit Classifiers

As emphasized above, system identification must be implemented by the internal process executed
by the observer, i.e., by the Hamiltonian HO. Indeed, it can only be HO that assigns different
functions to the inputs provided by HOW , and hence decomposes HOW into component system
identification, measurement, and energy–management interactions. While it is now commonplace to
regard observers as Bayesian agents [38,39] and a handful of architectural models of observers have
been proposed [32,40–42], the question of generic requirements on HO to implement “observation”
in any meaningful sense has been largely neglected. We approach this question here using tools
and methods from the theory of formal languages and category theory. These allow us to specify a
minimal virtual machine [43] that must be implemented by HO in any O capable of both identifying
and measuring the pointer states of an external system. This approach is independent of the physical
implementation of HO, up to requiring that O has sufficient degrees of freedom. We can, without loss
of generality, view O as implemented by a suitable circuit of quantum gates [44].

Barwise and Seligman [25] introduced the idea of a “classifier” as implementing the relation
between “tokens” in some language and the “types” to which they belong. We first characterize this
notion formally, and then show that the one-bit measurement operators MO

i can be identified with
one-bit classifiers. Mathematical operations on classifiers become, in this case, formal specifications of
computations on measurement outcomes implemented by HO.

Definition 1. A classifier A is a triple < Tok(A), Typ(A), |=A> where Tok(A) is a set of “tokens”, Typ(A)
is a set of “types”, and |=A is a “classification” relation between tokens and types.

A classifier for voltmeters, for example, would assign all examples (i.e., tokens) of voltmeters
to the general class (i.e., type) “voltmeters”; similarly a classifier for observations (tokens) of some
particular voltmeter V would assign all such observations, but no observations of other systems,
including other voltmeters, to the class (type) “observations of V” (see [26] for extensive review
with examples, and [45] for a specific application to system identification). The simplest classifiers
implement one-bit, yes–no classification decisions, i.e., they group entities (tokens) having some
property P into classes (types) “entities with property P”; for example, a one-bit classifier for black
objects would group all such objects, excluding all objects that were not black.

A natural map between classifiers is the “infomorphism” [25] defined as follows:
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Definition 2. Given two classifiers A =< Tok(A), Typ(A), |=A> and B =< Tok(B), Typ(B), |=B>,
an infomorphism f : A → B is a pair of maps

−→
f : Tok(B) → Tok(A) and

←−
f : Typ(A) → Typ(B) such

that ∀b ∈ Tok(B) and ∀a ∈ Typ(A),
−→
f (b) |=A a if and only if b |=B

←−
f (a).

Intuitively, an infomorphism “transmits the information” from one classifier to another, so that,
e.g., “b is type B” can encode or represent the information “a is type A”. “Information” here is not
simply a quantity of bits (“Shannon information”), but is rather the set of logical constraints imposed by
Definition 2; hence, it is “pragmatic information” as defined [46]. This idea of transmitting information
motivates the definition of an “information channel” [25], itself a classifier, expressed as a collection
{gi : Ai → C} of infomorphisms with a common codomain, or “core” C. Here, the classifier C encodes
or represents the information (i.e., the logical constraints) encoded jointly by the Ai; alternatively, C
can be thought of as a shared memory jointly accessed by the Ai. The sense which channels encode
sets of mutual constraints holding between classifiers is further elaborated in [25,26] where the notion
of a classifier is extended to that of a “local logic” by specifying a subset (possibly a singlet) of tokens
satisfying all of the types, and the notion of an infomorphism is extended to a “logic infomorphism”
that preserves this additional structure. It is natural to think of a local logic as “identifying” the token(s)
that satisfy all of its types, logic infomorphisms transferring token-identification information between
local logics, and channels comprising sets of logic infomorphisms as encoding mutual constraints that
assemble multiple identified tokens—which can naturally be thought of as “parts” [45]—into a larger
identified system.

Given suitable commutativity conditions, a collection of channels {gij : Aij → Cj} admits
a colimit, a single channel C that collects all of the classification information encoded by the Aij.
The conditions are:

• The Aij must be representable as a finite nonredundant set {Ak} with infomorphisms
f ij : Ai → Aj.

• There exist infomorphisms hi : Ci → C and hij : Ci → Cj.
• All compositions of infomorphisms with codomain C commute.

These can be summarized by requiring that all diagrams of the form shown in Figure 3 commute.
As the colimit in this case is a cocone over theAk, we refer to such diagrams as “cocone diagrams” (CCDs).
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Figure 3. A cocone diagram (CCD) is a commuting diagram depicting maps (infomorphisms) fij

between classifiers Ai and Aj, maps gkl from the Ak to one or more channels Cl over a subset of the Ai,
and maps hl from channels Cl to the colimit C (cf. Equation (6.7) of [26]).

Let us now consider a family of NR one-bit classifiers

Ai =< {e : W(e)}, {0, 1}, |=i> (8)

where W(e) if and only if e is an event in W and |=i is the ith of NR distinct, but not necessarily
mutually-exclusive, classification criteria. An infomorphism fij encodes a correlation between the
criteria |=i and |=j; if e meets the criterion |=i, i.e., e |=i 1, then fije |=j 1; otherwise, fije |=j 0.
Infomorphisms are by definition invertible, i.e., fij f ji = Identity; hence, this correlation is bidirectional.
Assuming now that a cocone C above the Ai exists, this C encodes the information that some event e∗
in W simultaneously satisfies all NR of the criteria |=i. It is thus natural to view this C as identifying
events of some type [e∗] that satisfy these criteria. Identifying [e∗] as “events in which R is present
in state |R〉” this is precisely what the set of mutually-commuting (by Equation (7)) operators {MR

j }
have been defined as doing. We therefore identify the operators MR

j with classifiers AR
i , and consider

the cocone CR as the definition, for O, of the reference R. As discussed in Section 2.1, we can regard
the MR

j as deployed simultaneously if we coarse-grain time. This identification of the MR
j as the base

of a CCD gives an explicit meaning both to the label R and to the idea that the MR
j together identify

R. As identifying R requires that R be in the fixed state |R〉, we can also consider the CCD to give an
explicit meaning to the idea of identifying R in state |R〉. This identification process is, as noted above,
a computation implemented by HO.

3.3. Measuring the Pointer State |P〉 of an Identified System S

By identifying R, the observer O by assumption identifies the system S, including its pointer
component P. We now turn to the question of measuring the pointer state |P〉, the state “of interest” of
S. We again employ the approach of formally specifying a computational process to be implemented
by HO.

Considering the set of measurement operators {MP
k }, it is clear that it can be partitioned into

a subsets, each of which contains only operators that mutually commute; in the limit, each of these
subsets is a singlet. Moreover, Equation (7) guarantees that any of the MP

k must commute with all
of the MR

j . Hence, we can consider, without loss of generality, measurements made by deploying
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the MR
j to identify S, and one of the MP

k to determine its (perhaps partial) pointer state. As above,

the generalization from a single MP
k to a kth subset {MP}k of mutually-commuting operators only

requires coarse-graining time.
As the selected MP

k satisfies [MP
k , MR

j ] = 0, ∀j, the methods of the previous section can be used

to construct a CCD over the MR
j together with MP

k . We can view the colimit CR
k in this CCD as

encoding the information that P is in state |Pk〉. In total, we can construct NP such CCDs. Call the
kth such CCD “CCDk”. We can now ask: What is the relation between the CCDk, given that the MP

k
generically do not (all) commute? To address this question, we introduce a discrete, coarse-grained
time parameter τ ≥ (NR + 1)∆t during which the MR

j and one or more mutually-commuting MP
k are

executed. We then define an operation Gij : CCDi → CCDj that transitions between CCDi and CCDj
in one unit of τ. Physically, this operation Gij can be viewed as a (formal specification of a) discrete
sample of the action of the propagator P(t) appearing in Equation (4).

As O can choose to make pointer-state measurements in any order, the operation Gij exists for
any i and j. In particular, Gji exists whenever Gij exists. Sequential transitions between CCDs can be
represented as compositions, e.g., Gij ◦ Gjk represents the sequential transition CCDi → CCDj → CCDk,
i.e., a sequence of measurements deploying ∑j MR

j + MP
i , then ∑j MR

j + MP
j , then ∑j MR

j + MP
k , where

again we allow MP
i to also stand for {MP}i for simplicity. We explicitly assume that ◦ is independent

of τ. If [MP
i , MP

j ] 6= 0, then Gij ◦ Gji 6= Gji ◦ Gij. Hence, the elements {Gij} with associative composition
◦ define a groupoid [47,48], not a group. Elements of this groupoid, which we denote G, are labeled by
the parameter τ, which distinguishes groupoid actions at distinct times. A sequence of such actions is
illustrated in Figure 4.

Figure 4. A sequence of CCDs identifying R (blue triangles) and measuring pointer components
Pi, Pj, Pk . . . Pl . Transitions between CCDs are implemented by groupoid elements, e.g., Gij and labeled
by discrete times, e.g., τi. The operators MP

k can equally well be generalized to subsets {MP}k of
mutually-commuting pointer-state observables.

Clearly a groupoid—indeed, in particular, a permutation group—can also be defined within each
CCDk. The elements of these groupoids Gk are operators Gk

lm that exchange the lth and mth elements
of the subset {MR

j } ∪ {MP}k of mutually-commuting measurement operators. These Gk are exchange

symmetry groupoids over the elements of their respective subsets {MR
j }∪ {MP}k. Actions by elements

of G break this exchange symmetry, resulting in decoherence as outlined below.

3.4. Sequential Measurements Induce Decoherence

Let us denote the unmeasured components of P at time τi as Pi, so P = Pi ⊗ Pi at τi. Again Pi can
also indicate those components of P measured by an ith subset of mutually-commuting observables.
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With this notation, at τi, W comprises a measured system R⊗ Pi and an unmeasured system Pi ⊗ E, i.e.,
we have a decomposition W = (R⊗ Pi)⊗ (Pi ⊗ E). The state |R⊗ Pi〉 is measurable—indeed, it is the
pointer state of interest—so |W〉must be separable as |W〉 = |R⊗ Pi〉|Pi ⊗ E〉.

Sequential measurements at τi and τj swap entanglement of components of P between R and E,
i.e., the groupoid elements Gij implement entanglement swaps:

Gij : |R⊗ Pi〉|Pi ⊗ E〉 → |R⊗ Pj〉|Pj ⊗ E〉 (9)

Such entanglement swaps implement decoherence [27]. Hence, we can view the groupoid
elements Gij as decoherence operators. These operators are implemented by HO, i.e., the observer O
decoheres each measured state |R⊗ Pi〉 by selecting it for measurement and coupling it to its own
specific decohering environment Pi ⊗ E. The functional asymmetry between the operator subsets MR

i ,
MP

j , and ME
k is evident in this representation, as is the asymmetry between the “selected” pointer

operators MP
i and the “unselected” operators MP

j . The “general” environment E serves as a resource
for decoherence that is accessed by O at each measurement.

3.5. Entanglement Swapping Induces Contextuality

The Kochen–Specker theorem [23] shows that quantum theory generically admits contextuality,
i.e., the outcome probability distribution obtained for some (subset of) observable(s) can depend
on what other observables are simultaneously measured, even when all simultaneously-measured
observables mutually commute. Dzhafarov and colleagues have proposed an extension of classical
probability theory, termed “contextuality by default” (CbD) in which any measurement system is
prescribed in terms of “bunches” of random variables coupled through degrees of connectedness
leading to a context label that distinguishes between “true contextuality” on the one hand,
and “non-contextual description” on the other [28,29]. The latter typifies the habitual imperfection of
empirical systems subject to direct influences, for example, classical signaling between collections of
degrees of freedom. “True” contexts distinguish sets of measurements with non-direct influences that
can be unpredictable, or indeed empirically unfathomable. Further, it has been shown both that this
extension is sufficient to capture Kochen–Specker contextuality [30] and that such contextuality can
be observed in human decision making [49] (cf. [50] for an analysis of experiments that only appear
to demonstrate contextuality). Effectively, all measured probabilities are expressed as conditioned
on some context label c, i.e., Prob(x) becomes Prob(x|c) for any event x measured in c. The context
labels in CbD can be viewed simply as a bookkeeping device; there is no formal requirement that the
contexts are fully characterized by the available observations.

The unmeasured systems Pi⊗ E provide natural context labels for comparing outcome probability
distributions over the measured systems R⊗ Pi. As the outcomes specifying |R〉must remain fixed to
permit system identification, the outcome probability distributions of interest are of those of the |Pi〉.
If each of the Pi is a one-dimensional component of P, then no observables are measured in multiple
contexts and no contextuality is observable. If, however, the Pi are multidimensional components of
P, each measured using a subset of mutually-commuting observables {MP}i, contextuality can be
expected by default whenever {MP}i ∩ {MP}j 6= ∅ for some subsets i and j. The mechanism inducing
contextuality is the entanglement swap implemented by the Gij in Equation (9). The special case of
noncontextuality only occurs if (in the sense of approximation) |Pi ⊗ E〉 ≈ |Pj ⊗ E〉, i.e., only if:

Gij|R⊗ Pi〉 ≈ |R⊗ Pj〉 (10)

This can occur if and only if [MP
i , MP

j ] ≈ 0 for all MP
i ∈ {MP}i and MP

j ∈ {MP}j [30]. It can
occur, in other words, only if Gij does not (significantly) break the exchange symmetry within each
subset of mutually-commuting operators.



Symmetry 2020, 12, 810 12 of 18

3.6. CCD Commutativity Enforces Bayesian Coherence

As mentioned above, it is now commonplace to consider observers to be Bayesian agents.
A Bayesian agent is a system that implements Bayes’ theorem for conditional probabilities, Prob(a|b) =
Prob(b|a)(Prob(a)/Prob(b)), where a and b are any two events or conditions and Prob(b) 6= 0. In the
CbD framework, Bayes’ theorem only applies within a context. If probabilities are computed using
complex amplitudes for states and the Born rule, contextuality is taken into account via phase
interference and Bayes’ theorem can be applied across contexts [38].

While Bayes’ theorem follows from the usual Kolmogorov axioms, following de Finetti [51], it is
generally motivated by the rationality of avoiding “Dutch book” probability assignments that violate
the Kolmogorov axioms. Assigning probabilities, including conditional probabilities, only in ways
that satisfy the Kolmogorov axioms achieves “Bayesian coherence.” Here, we show that if the CCD
formalism is extended to include probability labels on observational outcomes, the requirement of
commutativity enforces Bayesian coherence and hence compliance with the Kolmogorov axioms.

To motivate this, let us represent a single binary measurement somewhat redundantly as
implemented by two classifiers, A(1) and A(0), that test for outcomes “1” and “0”, respectively.
The probabilities of these outcomes are Prob(1|R) and Prob(0|R), respectively; we can treat these
probabilities as labels as shown in Figure 5. Here, the horizontal arrow is an infomorphism encoding
the classical correlation between A(1) and A(0). Commutativity requires that all paths through
the diagram yield the same result; it is natural to extend this requirement to the probability labels
by requiring:

1. that only the shortest paths between objects in a diagram (such as a CCD) are labeled, and that
the probability of a such a path is the product of the probabilities of its component arrows; and

2. that the probabilities of all paths sum to unity.

Additivity is thus ensured by commutativity, and conjunction subsumed by conditionals when
defined as in Definition 3 below.

Assigning a probability 1/n to each horizontal arrow (including right-to-left inverse arrows,
even if implicit) between pointer-component classifiers in a diagram with n such classifiers, we have
in the case of Figure 5 that Prob(1|R) = 1− Prob(0|R). Collectively then, the diagram exhibits Bayesian
coherence; in particular, the posterior of a prior at one stage can be regarded as the prior for the
next [45]. This procedure clearly generalizes to any CCD with n binary pointer-state classifiers
(i.e., binary-valued measurement operators) and hence n2 distinct sets of binary-valued observational
outcomes. As the state |R〉must remain fixed, probabilities are not assigned within the R-identifying
cocones of such CCDs.
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Figure 5. Bayesian coherence is obtained if probabilities along all paths in a diagram sum to unity.
Probabilities are not assigned within the R-identifying cocone (blue triangle).

The idea of “assigning” probabilities to arrows in CCDs over classifiers can be made precise by
interpreting classifiers themselves as probabilistic. Following [52] (cf. [53]), we define:

Definition 3. A sequent M |=A N holding of a classifier A is a pair of subsets M, N of Typ(A) such that
∀x ∈ Tok(A), x |=A M→ x |=A N.

The sequent relation can be weakened by requiring only that if x |=A M, there is some probability
Prob(N|M) that x |=A N. This is essentially how a conditional probability interprets the logical
implication “⇒” [54] (see [26] for details). If sequents conditioned on R are defined within the colimit
classifier R⊗ Pk of a CCDk over a set of pointer-state operators {MP}k and then relaxed to probabilities,
these probabilities can be migrated downward as labels on the infomorphisms from the elements
of {MP}k to R⊗ Pk. As these probabilities are defined within CCDk, they are CbD compliant with
context label k.

4. Thermodynamic Asymmetries and Their Effects

4.1. Information Processing Demands Are Asymmetrical between R, P and E

The formal treatment above admits, via the explicitly thermodynamic representation of HOW
in Equation (2), a straightforward physical interpretation in terms of information and resource
flows. The environment E is represented in the above as a passive resource for decoherence.
The thermodynamic role of E, however, is that of free energy source and waste heat sink.
The conversion of free energy to waste heat (“metabolism”) funds the thermodynamically-irreversible
state changes of O that are interpretable as “recording” observational outcomes—the “informative”
information about W that O is using HOW to discover—on some “memory” implemented by HO.
By including the interaction with E as an explicit component of the “measurement” interaction
between O and W, Equation (2) avoids the usual “open system” assumption that allows the effects
of free-energy extraction and waste-heat dissipation on the measurement process to be neglected. It
thus makes the asymmetry between the effects on O of “informative” information flows and “mere”
resource flows explicit.
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In a simple system with a state trajectory describable as a Markov process, the memory on which
observational outcomes are recorded is not persistent for more than one time step ∆t. However,
for “interesting” observers capable of performing multiple observations of the same identified
system, memories must persist for multiple time steps. The identification criteria for R, in particular,
must persist for multiple time steps in any observer capable of re-identifying R across multiple cycles
of measurement. Persistence raises the question of implementation. In a classical system, a memory is
persistent only if it has as time-invariant classical record. In a quantum system, however, the classical
record of a memory can be erased or modified (i.e., erased and replaced), but it may leave an implicit
record of induced phase coherence relations [55]. Such implicit records enable non-Markovian behavior,
e.g., Leggett–Garg violations. In the present context, we consider memory of previously-obtained
outcomes to be a function of HO, with one effect of memory being the choice of what measurements to
make next, e.g., the choice of the functions nk

i (t) in Equation (5).
Maintaining memories against thermal noise (classical systems) or decoherence (quantum systems)

requires the expenditure of free energy. The effective thermodynamic efficiencies NRβR and NPβP

of processing measurements of R and P, respectively, must, therefore, incorporate the free-energy
demands of maintaining the functional integrity of the virtual-machine architecture described in
the last section, however it is implemented by HO. Hence, we can generically expect βR, βP � 1,
with magnitudes scaling roughly both with NR and NP, respectively, and with the number of elements
of G, i.e., with the complexity of commutativity constraints between the MP

k . Because the time-varying
outcomes generated by the MP

k can be expected to have a larger influence on what is measured next
than the time-invariant outcomes generated by the MR

j , we can also generically expect βP > βR.
What is “of interest” about an external system S naturally requires more free energy to process,
remember, and act upon than what is not [46].

The acquisition of free energy from E must, on the other hand, be relatively efficient if the free
energy obtained is to fund information processing (i.e., internal “work”) as well as the “metabolic”
processes that convert it to waste heat, i.e., actions back on E or external “work”. Hence, we must
generically have NEβE < NRβR, NPβP. If we make the reasonable assumption that information
processing is somehow compartmentalized in O, e.g., to provide isolation from noise and/or
decoherence, a large uniform heat bath will be less efficient as a power source than a smaller,
higher-temperature bath local to the processing compartment. We can, therefore, expect that typical
O will allocate a component of HOE to high-efficiency free-energy acquisition, i.e., that typically
NEβE = NE(h)βE(h) + NE(l)βE(l), with NE(h)βE(h) � NE(l)βE(l), where superscripts h and l indicate
high and low efficiency, respectively. Both organisms and apparatus, including all practical computers,
employ this compartmentalization strategy ubiquitously.

4.2. Thermodynamic Interactions with E Generically Disturb |P〉

It is standard to assume that the environment E is “large” even though a large environment is
not strictly needed for decoherence [2,10]. One motivation for a large environment is to assure that
any classical disturbances to E during the course of observation are well away from the system S of
interest and hence negligible.

The assumption of negligible disturbance breaks down, however, when both the thermodynamics
of measurement and the mechanism of observer-relative decoherence are taken into account. As shown
above, the free energy required per bit to process outcomes obtained by the MR

j and MP
k is large

compared to kBTO and hence for typical, near-isothermal measurement interactions, large compared
to kBTE, at least in the near vicinity of O. The action in Equation (4) of O on W, and hence on E, is
therefore large compared to h̄. Disturbances to E at the scale of h̄ are insignificant classically, but can
be significant to entanglement swaps involving E as in Equation (9). As the swap in Equation (9) is
executed every time a new subset of mutually-commuting MP

k is deployed, these disturbances are not
incidental to, but rather are direct consequences of the measurement process. Hence, the action in
Equation (4) cannot be considered negligible, but rather must be assumed generically to disturb |P〉.
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As shown in [17], the scale of this disturbance increases as the measurement resolution and hence the
input bandwidth NP increases.

5. Discussion

We argue here that the physical interactions that implement observations appear to lose
information for a simple and somewhat pedestrian reason: HOW appears not to conserve information
because only a (typically small) fraction of the information transferred is considered “informative”
by the observer. The rest is, of necessity, employed as free energy to fund the processing and
memory storage of the “informative” fraction. In typical discussions of measurement, even the
information required to identify R is ignored; only the pointer state is regarded as “of interest” and
hence informative, while the rest of the transferred information is relegated to noise or decoherence
(e.g., [56], where this is made fully explicit).

When the measurement interaction HOW is considered fully explicitly, two distinct symmetries
are broken. Not only are input bits to be processed as information distinguished from input bits to
be processed as free-energy supply, but input bits indicating the time-varying pointer state |P〉 of S
must also be distinguished from input bits identifying the reference component of S, the state |R〉 of
which must remain time-invariant. These distinctions in how input bits are processed are reflected
by thermodynamic asymmetries, i.e., by the requirement that NEβE < NRβR, NPβP and the generic
expectation that βP > βR.

The fundamental asymmetry between R and P is reflected in the architecture of the minimal
virtual machine that must be implemented by any observer capable of identifying a system and making
a sequence of pointer-state measurements. Simultaneous (in coarse-grained time) measurements of
mutually-commuting subsets of observables, including in every instance the MR

j , are processed by
a CCD. Switching between mutually-commuting subsets i and j of observables is implemented by a
groupoid operator Gij. These operators execute entanglement swaps or, equivalently, context swaps.
In either picture, they induce decoherence and generically disturb |P〉.

We do not explicitly consider the operations required to prepare a system S for measurement.
We note, however, that preparing S requires identifying S and hence identifying R, and that
“measurement settings” are components of P, as illustrated in Figure 2. Preparation requires, in this
case, the same operations as measurement; indeed, the two can be considered duals [57]. The dual of a
cocone is a cone; combining the two with a single network of classifiers yields a cone–cocone diagram
(CCCD) depicting information flow into, through, and then out of the classifier network [26]; it is
natural to interpret the limit (of the cone) in a CCCD as a complete prepared state (including R) and
the colimit (of the cocone) as a complete measured state, as in Section 3.2. Mutually non-commuting
subsets of preparation procedures induce groupoid operations on the cone analogous to the Gij.

We emphasize that these results depend only on standard quantum theory, with no assumptions
about the structures or properties of O and W beyond the Hilbert-space representation and the
assumptions of separability and finiteness specified in the Introduction. They thus apply to any
physical system, and depend quantitatively only on the number of degrees of freedom interpretable as
subserving memory functions in some form.

We expect the groupoid concept to arise in a similar formalism to the one presented here when
equivalence relations are used to classify various types of entanglement [58]. In addition, it has
not escaped our notice that CCCDs bear certain structural similarities to another representation of
information flow from preparation to measurement, the “amplituhedron” of [59]. This and a deeper
understanding of the physical meaning of G await further work.
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Abbreviations

The following abbreviations are used in this manuscript:

EPR Einstein–Podolsky–Rosen
IGUS Information Gathering and Using System
CCD Cocone Diagram
CCCD Cone–Cocone Diagram
CbD Contextuality by Default
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