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Abstract

We apply previously developed Chu space and Channel Theory methods, focusing on the

1



construction of Cone-Cocone Diagrams (CCCDs), to study the role of epistemic feelings, partic-

ularly feelings of confidence, in dual-process models of problem solving. We specifically consider

“Bayesian brain” models of probabilistic inference within a global neuronal workspace (GNW)

architecture. We develop a formal representation of Process-1 problem solving in which a so-

lution is reached if and only if a CCCD is completed. We show that in this representation,

Process-2 problem solving can be represented as multiply-iterated Process-1 problem solving

and has the same formal solution conditions. We then model the generation of explicit, re-

portable subjective probabilities from implicit, experienced confidence as a simulation-based,

reverse-engineering process, and show that this process can also be modeled as a CCCD con-

struction.

Keywords: Bayesian inference, Dual-process models, Epistemic feelings, Chu space, Channel

Theory, Cone-Cocone Diagram, Problem solving.

1 Introduction

Since the pioneering work of Simon (1967, 1972) and Tversky and Kahneman (1973, 1974), dual

process models that distinguish fast, heuristic, and highly-automated (“Process-1”) from slow, de-

liberative, and effortful (“Process-2”) reasoning, decision making, and problem solving processes

have become commonplace (see Evans (2006, 2010); Kahneman (2011); Evans and Stanovich (2013)

for reviews, Moors and De Houwer (2006); Melnikoff and Bargh (2018) for criticism, and Frankish

(2010) for a philosophical perspective with extensive historical background). A wealth of informa-

tion is available on the functional aspects of this distinction, including the speed-accuracy tradeoff

(SAT; Wickelgren, 1977; Heitz, 2014), the susceptibility of Process-1 to an array of biases and its

consequent ease of manipulation (Kahneman, 2011), and the sensitive dependence of Process-2 on

attentional resources, in part to counteract elements of bias endemic to Process-1 (Evans, 2008).

There are also salient phenomenological differences between Process-1 and Process-2 cognition.

Problem solving using Process-2 is experienced as a process: it feels effortful and extended in time,

and typically involves a sequence of experienced intermediate steps. Problem solving using Process-

1, in contrast, is not experienced as a multistep process. Only the problem to be solved and its
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solution are experienced. These differences are often summarized by characterizing Process-1 and

Process-2 cognition as “unconscious” and “conscious” (Wason and Evans, 1975), “automatic” and

“deliberate” (Evans, 2006), or “intuitive” and “rational” (Kahneman, 2011) respectively.

As Moors and De Houwer (2006); Melnikoff and Bargh (2018) point out in their critical reviews,

aligning the opposed pairs of phenomenological characteristics often associated with Process-1 and

Process-2 does not cleanly separate all of cognition into two distinct, non-overlapping categories.

Much “Process-1” cognition is deliberate, for example, in that it is performed intentionally for the

purpose of achieving some goal, and “Process-2” cognition can in some cases fail to be rational, or

even to meet minimal standards of coherence. In what follows, therefore, we will focus on the kinds

of canonical cases that motivate the distinction (Tversky and Kahneman, 1973, 1974). Canonical

Process-2 cognition is exemplified by non-expert solutions to difficult mathematical “word” prob-

lems. Here problem solving requires multiple, consciously distinguished, individually reportable,

sequential steps, conscious recall of step-relevant facts and rules, and conscious judgements about

relevance, correctness, and whether progress is being made toward a solution. This kind of con-

scious, sequential process is what is commonly called “thinking through” a problem. In contrast,

canonical Process-1 cognition is exemplified by the construction of simple grammatical sentences

in one’s native language within a relaxed conversational setting. While sentence production in

such a setting is clearly driven by communicative goals, it “happens naturally” in a single step,

without conscious recall of grammatical rules or alternative formulations, and without awareness of

exactly what will be said until the utterance is actually produced. Sentence production can become

Process-2, e.g. when “speaking carefully” to an opponent in a dispute. Here the phenomenology

is more similar to solving mathematical problems than to relaxed conversation. We will use the

terms “Process-1” and “Process-2” in what follows to refer to such canonical cases.

Positive epistemic feelings, e.g. feelings of familiarity, recognition, agency, ownership, and

confidence (see Arango-Muñoz, 2014; Proust, 2015; Schwarz, 2012, for reviews) signal successful

completion for both kinds of problem solving, with the “Aha!” of insight (Kounios and Beeman,

2015) as an extreme example. More negative epistemic feelings such as doubt or frustration are

typical of the early stages of canonical Process-2 problem solving and may persist until a solution is
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finally reached. Negative epistemic feelings may also accompany outright failure of either Process-1

or Process-2, for example, when one blurts out an entirely unintended and unfortunate statement

in conversation (Process-1) or reaches the end of a difficult mathematical “proof” only to realize

that it contains a contradiction (Process-2). Process-2 problem solving also often involves, and

in the rational-agent models of classical, normative decision theory mechanistically requires (e.g.

Parmigiani and Inoue, 2009), a particular kind of epistemic feeling not encountered in Process-1

problem solving: a feeling of confidence made explicit and at least semi-quantitative as a subjective

probability or “degree of belief” (de Finetti, 1974) in a recalled background fact, an intermediate

step, or a considered possible solution. In a traditional representational model of problem solving

(e.g. Fodor, 1983; Pylyshyn, 1984), such degrees of belief would be explicitly stored, e.g. as quan-

titative values associated with propositions, for recall when needed by Process-2. Both theoretical

and empirical considerations now weigh against such models, suggesting instead that explicit, ex-

perienced subjective probabilities are constructed (Sanborn and Chater, 2016; Chater, 2018) or

“read out” (Meyniel, Sigman and Mainen, 2015) from an underlying implicit representation. Here

we suggest a particular model of this process: that explicit, experienced subjective probabilities

are synthesized by running multiple Process-1 simulations of closely-related problems or problem

components. The energy and time required to do this, we suggest, contribute to Process 2 being

effortful and slow.

We begin in §2 by describing Process-1 problem solving in a general model framework based in

category theory (e.g. Adámek, Herrlich and Strecker, 2004; Awodey, 2010) originally developed to

provide a representation for bidirectional constraint flow in perceptual categorization (Fields and

Glazebrook, 2019a,b). We show how quasihierarchical networks of Bayesian inferences can be repre-

sented by a conceptually simple category-theoretic construction, a scale-free information-processing

architecture called a Cone-Cocone Diagram (CCCD). This representation naturally generalizes from

perceptual categorization to Process-1 problem solving in any domain, a generalization consistent

both with the view of cognition as essentially perceptual proposed by Chater (2018), and with

standard predictive Processing (PP), hierarchical predictive coding (HPC), or “Bayesian Brain”

models (see Knill and Pouget, 2004; Friston, 2010; Clark, 2013; Hohwy, 2013; Seth, Suzuki and
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Critchley, 2012, among many others). The CCCD representation does not in any way contradict

standard PP/HPC models, but rather expresses them in a more general mathematical language

that provides an explicit representation of the logical constraints that hold between representations

at either the same or different levels of the hierarchy. A CCCD requires, by its construction, the in-

ferential coherence that is enforced in Bayesian models by probability-theoretic constraints (Fields

and Glazebrook, 2020), but with the additional features that inferences are logical as well as prob-

abilistic and are intrinsically semantic. The CCCD representation also naturally accommodates

contextuality, including “intrinsic” contextuality as discussed by Dzhafarov and Kujala (2017a);

Dzhafarov and Kon (2018), by allowing probability distributions to be context-dependent in a well-

defined way (Fields and Glazebrook, 2020). A problem is solvable in the CCCD representation if

and only if a CCCD modeling the solution process can be constructed.

We proceed in §3 to discuss subjective probabilities, distinguishing their implicit represen-

tation by connection strengths or activation values, their expression as feelings of confidence in

outcomes of Process-1 problem solving, and their explicit representation as reportable degrees of

belief in Process-2 problem solving. We formulate in §4 the question of how highly-distributed

sets of implicitly-represented probabilties could be repackaged into and summarized by feelings of

confidence in a Process-1 solution, using a generalized global neuronal workspace (GNW) model

(Baars and Franklin, 2003; Baars, Franklin and Ramsoy, 2013; Dehaene and Naccache, 2001; De-

haene, Sergent and Changeux, 2003; Dehaene, Charles and King, 2014; Shea and Frith, 2019) that

includes both perception and interoception. Here we follow the basic PP/HPC dictum that the

brain assimilates a cascade of competing model-based simulations to address “what is this new

sensory input like?” (Bar, 2009) while acknowledging that preservation of bodily state is both the

fundamental expectation around which active inference is organized and a sensitive indicator, via

affective feedback, of the possible consequences for bodily state of projected world states or actions

(Barrett and Simmons, 2015; Barrett, 2017; Seth, 2013; Van de Cruys, 2017).

Within the GNW model, feelings of confidence, (epistemic) uncertainty, familiarity, and other

kinds of epistemic feelings, are synthetic interoceptions that blend cortical performance-monitoring

signals with subcortical valence and reward signals. Interestingly, we are close to the recent hy-
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pothesis of Shea and Frith (2019) that workspace representations involve metacognitive parameters

such as confidence and uncertainty, including, as we propose here, epistemic feelings. While pre-

diction error itself indicates short-term performance, Van de Cruys (2017) has argued that the

rate of change of prediction error is the key correlate of experienced affect, with rapidly improving

predictions generating positive and rapidly worsening predictions generating negative experiences.

How do signals dependent on temporally-extended processing modulate the uninterrupted bidi-

rectional flow of constraint information through the parallel, effectively domain-specific channels

“below” the GNW? How do worsening predictions interrupt fluid Process-1 performance, resulting

in slower, stepwise Process-2 performance? Within a GNW picture, an interrupt signal must be

strong enough to “ignite” conscious processing (Hohwy, 2013; Barrett, 2017; Whyte, 2019). With

this background, we outline our primary hypothesis, that Process-2 cognition is implemented by

multiple rounds of Process-1 cognition, and then show in §5 how a model of experienced, explicit

subjective probabilities as synthesized from confidence measures naturally follows. If this model is

correct, conscious deliberation is effectively a reverse-engineering activity: it is discovering, by the

experimental tactic of running multiple simulations with slightly varying initial conditions, what

one thinks (cf. the notion of a “representational exchange mechanism” recently proposed by Cush-

man (2020)). As this reverse-engineering process may be employed to a greater or lesser extent in

different contexts, one can expect canonical Process-1 and Process-2 cognition to be two ends of a

continuum with a substantial grey area in between, perhaps explaining some of the “misalignments”

of phenomenological markers discussed by Melnikoff and Bargh (2018). We close by formulating

model predictions and discussing possible experimental approaches (§6).

2 Visual object recognition as a model of problem solving

In Fields and Glazebrook (2019b), we showed how the processes of visual object categorization

and individual object recognition can be represented by a mathematical object, a CCCD, that

describes a quasi-hierarchical network of inferential constraints. Here we first outline the basic

intuitions behind the CCCD formalism. Next we summarize, from Fields and Glazebrook (2019a),
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the mathematical tools needed (§2.2) and use these tools to construct a CCCD (§2.3). We then

describe a CCCD in intuitive terms, using visual object recognition as an example (§2.4). Readers

uninterested in the technical details can skip directly to this intuitive example. All “canonical”

Process-1 problem solving, we then claim (§2.5), can be represented using the same structure, i.e.

a CCCD, used for visual object recognition.

2.1 The basic intuitions

Suppose Alice is examining a map of London. Some large-scale pattern of activity spanning Alice’s

occipital, temporal, and parietal lobes represents the map “to Alice” as a conscious visual percept.

At the same time, the map is a conventionalized representation of London. Because the semantic

relation instantiated in Alice’s neurocognitive system and the semantic relation instantiated by the

social conventions of cartography are connected by an object, the map that Alice is examining,

Alice’s visual experience when examining the map provides information not just about the map,

but also about London.

Combining semantic information (“meanings”) of different kinds or from different sources to

produce “higher-level” representations is a fundamental and ubiquitous function of cognition. How

can it be described in a way that captures the logic of such combinations, but is independent of both

the algorithms or other procedures used and how these are implemented? Barwise and Seligman

(1997) employed mathematical tools from category theory, the most general available mathematical

language (see e.g. Adámek, Herrlich and Strecker, 2004; Awodey, 2010, for accessible introductions),

to develop a way of describing the relations between the semantics of different representations

without having to explicitly model the structures or implementations of those representations. The

“language” used to do this is, like category theory itself, diagrammatic. The relations between
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Alice’s neurocognitive activity, her map, and London can be diagrammed as:

Combined
representation

Visual
representation

φ
77

Conventional
representation

ψ
gg

Alice’s brain

f1 77

The map

f2hh g1 66

London

g2ff

The arrows in this diagram represent a bottom-up flow of logical constraints on the meanings of

representations. The activity pattern in Alice’s brain involves visual-processing areas, hence her

representation of the map is constrained (arrow f1) to be visual. The shapes depicted on the map

constrain (f2) the “shape” that Alice imaginatively experiences. The shapes depicted on the map

likewise constrain (g1) the geographical locations that it can represent while remaining consistent

with the conventions of cartography; the “shape” of London itself similarly constrains (g2) its set

of possible cartographically-accurate maps. The semantics of Alice’s visual representation and

the semantics of the conventional cartographic representation similarly constrain (φ and ψ) the

combined representation to be simultaneously visual, cartographic, and of London. This kind

of relationship between constraints from different sources is called a “distributed system” in the

language of Barwise and Seligman (1997); we provide a formal definition and generalize the above

diagram in (2.5) below.

The flow of semantic constraints in map reading, or in distributed systems generally is not,

however, only bottom-up. If Alice gets “turned around” while navigating London, she may realize

by seeing the actual layout of some part of the city that she has read the map incorrectly. She may

see that the map is wrong or out of date. In either case, the constraints in the above diagram also

flow downward, from Alice’s comparison of the map to London to semantic features of her visual

representation, the map, or perhaps even London itself. Alice’s ability to navigate using a crude

sketch on a bar napkin, for example, loosens somewhat the usual cartographic conventions, at least

for Alice. As we will see in §2.3 and then use in §2.4, the CCCD formalism is based on recognition
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of the bidirectionality of semantic constraint flow in distributed systems. First, however, it is useful

to lay out the basic conceptual tools with which a CCCD is defined.

2.2 Basics of Channel Theory

Category Theory is a general mathematical language for describing objects and relations (Adámek,

Herrlich and Strecker, 2004; Awodey, 2010). Here we give a short outline of the basic ideas. A

category C comprises a set of objects and a set of arrows (i.e. directed relations, or morphisms)

between objects, satisfying two requirements: 1) arrows compose associatively, i.e. for objects

A,B,C,D, if f : A → B, g : B → C, and h : C → D, then hgf : A → D, and 2) each

object has an identity arrow idA : A → A. Readers familiar with mathematically paired concepts

such as sets with functions, sets with relations, vector spaces with linear mappings, groups with

group homomorphisms, topological spaces with continuous mappings, as the respective objects and

arrows, will see these as familiar examples of categories. One of the simplest categories is the

category of Chu spaces, any object in which is defined as follows:

Definition 2.1. A (dyadic or two-valued) Chu space C consists of a triple (Co,C, Ca) where

Co is a set of objects, Ca is a set of attributes, along with a satisfaction relation (or evaluation)

C⊆ Co × Ca −→ K, given a set K (with no structure assumed).

With K = {0, 1}, take a set (of objects) X = {a, b, c}. This can be represented as the Chu space



a 0 1 0 1 0 1 0 1

b 0 0 1 1 0 0 1 1

c 0 0 0 0 1 1 1 1

By associating objects with attributes, Chu spaces provide a natural model of the process of cate-

gorizing objects by their attributes; the categorization process implements the satisfaction relation

. They easily generalize to multi-valued satisfaction relations, e.g. relations satisfied with some

probability. The arrows in the category of Chu spaces relate one categorization process to another:
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Definition 2.2. A Chu transform of a Chu space C = (Co,C, Ca) to a Chu space D = (Do,D, Da)

is a pair of functions (fa, fo) with fo : Co −→ Do, and fa : Da −→ Ca, such that for any x ∈ Co,

and y ∈ Da, we have fo(x) D y, if and only if x C fa(y).

These transforms constrain both the objects and attributes of the Chu spaces to which they relate,

forcing the two categorization processes to “line up” in the way one would intuitively expect.

Chu spaces were originally developed within category theory itself (Barr, 1979, 1991). They are

more general than topological spaces, and have been extensively applied in theoretical computer

science (Pratt, 1995, 1999a,b), physics (Abramsky, 2012; Fields and Glazebrook, 2020; Gratus and

Porter, 2006) as well as elsewhere in mathematics, mainly because of the considerable scope for the

choice of the relation , and hence the structure afforded by the corresponding Chu space. These

include probabilistic (in particular, conditional) relations (Allwein, Moskowitz and Chang, 2004;

Nhuy and Van Quang, 2001), spatial observations (Gratus and Porter, 2006), and “degree to which

it belongs” fuzzy-type relations (Papadopoulos and Syropoulos, 2000); numerous examples are

discussed in Fields and Glazebrook (2019a). Significantly, all theories of ‘relational structures’ (with

and without topological structure) can be modeled by Chu spaces (Pratt, 1997); such ‘structural’

models include those pertaining to analogy and metaphor (e.g. Brown and Porter, 2006; Fields,

2011, 2013; Gentner, 1983; Old and Priss, 2001).

For the present purposes, the most important application of Chu spaces is in modeling se-

mantic (Dretske, 1981) or “pragmatic” (Roederer, 2010) information flow and inference, which are

presented here in the guise of Chu spaces known as Channel Theory (Barwise and Seligman, 1997).

The fundamental concept in this case is the idea of a “Classification” relating “Tokens” to the

“Types” that encompass them:

Definition 2.3. A Classification (sometimes called a “classifier”) A = 〈Tok(A),Typ(A),A〉 con-

sists of a set Tok(A) consisting of the tokens of A, a set Typ(A) consisting of the types of A, and

a classification relation

A⊆ Tok(A)× Typ(A), (2.1)

that classifies tokens to types.
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Example 2.1. Following Barwise and Seligman (1997, Ex. 2.2, p.28), a first order language L is

a classification, where Tok(L) consists of a set M of certain mathematical/logical structures, and

Typ(L) consists of sentences in L, and M  ϕ, if and only if ϕ is true in the token M . The type

set of a token M is the set of all sentences of L true in M , called the theory of M (see Barwise and

Seligman (1997, Ch.9) for the development of formal details pertaining to the latter concept).

In Channel Theory, Chu transforms are formulated as “infomorphisms” mapping one classifica-

tion to another (Barwise and Seligman, 1997):

Definition 2.4. Given two classificationsA = 〈Tok(A),Typ(A),A〉 and B = 〈Tok(B),Typ(B),B

〉, an infomorphism f : A� B, is a pair of contravariant maps

i)
−→
f : Typ(A) −→ Typ(B)

ii)
←−
f : Tok(B) −→ Tok(A)

such that for all b ∈ Tok(B), and for all a ∈ Typ(A), we have

←−
f (b) A a, if and only if b B

−→
f (a). (2.2)

This last condition may be schematically represented by:

Typ(A)
−→
f // Typ(B)

B

Tok(A)

A

Tok(B)
←−
foo

(2.3)

In this definition, types play the role of Chu-space objects while tokens play the role of attributes, an

example of the duality between objects and arrows characteristic of category theory in general. The

satisfaction relations A and B are explicitly regarded as enforcing semantic, not merely syntactic

or set-theoretic constraints, rendering both classifications and infomorphisms intrinsically semantic

notions. The intuition is that an infomorphism transmits the information from one classification

to another, so that, e.g. “b is type B” can encode or represent the information “a is type A”.

Note that “information” here does not simply specify a quantity of bits, as typical of Shannon
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information (Cover and Thomas, 2006), but it is rather the set of logical constraints imposed by

Definition 2.4. Thus it may be viewed as “pragmatic information” as proposed in Roederer (2010).

Example 2.2. We exemplify these latter concepts with a straightforward example. Consider the

classification M = 〈Messages, Contents,M〉 where Messages are classified by their Contents

(Allwein, Moskowitz and Chang, 2004).

Suppose we have another such classification M′ = 〈Messages′, Contents′,M′〉. An infomorphism

f : M −→ M′ may represent a function decoding messages from M′ to messages in M, so that

whatever can be noted about the translation, may be mapped into something noted in the original

message. That is, mf M C ⇔ m M′ C
f .

This idea of an infomorphism as a mapping between classifications provides the basic building

block for constructing multi-level, quasi-hierarchical classification systems. Like the connections

between “processing layers” in brains, infomorphisms are intrinsically bidirectional. Channel The-

ory provides a flow of reasoning thanks to the allied concepts of local logic and logic infomorphism

(Barwise and Seligman, 1997, Ch.12) in which infomorphisms become manifestly bidirectional maps

between sets of logical relations.∗ This structure is occasionally represented by concept lattices, as

in e.g. for reference ontologies (Kalfoglou and Schorlemmer, 2003), or for metaphor (Old and Priss,

2001). We refer the interested reader to Barwise and Seligman (1997, Ch.12) for the complete for-

mal details (see also Fields and Glazebrook (2019a,b) with examples), but for the sake of a present

workable explanation, let us say that a classification can be extended to a local logic by specifying a

subset (possibly a singleton) of tokens satisfying the types of a (regular) theory (such as exemplified

in Example 2.1) that specifies the logical aspects of some situation. Accordingly, an infomorphism

is extended to a logic infomorphism which preserves this additional (logical) structure. In fact, any

classification admits its own local logic (Barwise and Seligman, 1997, 9.1). Significantly, the flow

of information through a network of such logic infomorphisms can naturally be interpretable as

“inference” in the usual sense. As the satisfaction relation  can be considered time- and context-

dependent, these inferential processes can be regarded as having similar dependencies. Putting it

∗The role of an infomorphism contrasts with the superficially-similar treatment of Ehresmann and Vanbremeersch
(2007); Ehresmann and Gomez-Ramirez (2015), which basically implements maps between neurons or co-activated
functional assemblies of neurons (christened “cat-neurons”).
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another way, if component classifiers represent causal “if – then” relations, the inferences imple-

mented are likewise causal. We can also interpret classifications themselves as probabilistic (cf.

Barwise (1997)), and to see this we introduce an important ingredient of a local logic, namely the

sequent which we define now:

Definition 2.5. A sequent M A N holding of a classification A is a pair of subsets M,N of

Typ(A) such that ∀ x ∈ Tok(A), x |=A M ⇒ x A N .

We observe that a sequent encodes a semantic, e.g. causal constraint that in information

flow functions effectively as a logical gate. As pointed out in Allwein (2004); Allwein, Yang and

Harrison (2011) (see also Fields and Glazebrook (2019a)), the sequent can be relaxed by requiring

only that if x A M , there is some probability P (N |M) such that x A N . This is essentially

how a conditional probability interprets the logical implication “⇒” (Adams, 1998), leading to

a representation of probabilistic inference, including Bayesian inference as applied in Fields and

Glazebrook (2019b, 2020). We will use this interpretation in §2.5 where the information flow

itself generates probability distributions (an earlier discussion of inference along similar lines was

proposed in McClelland (1998)).

2.3 Constructing a CCCD

As the first step in constructing a CCCD, we define a finite information channel Chan as a finite

indexed family {fi : Ai � C}i∈I of infomorphisms having a common codomain C, called the core

of the channel Chan:

C

A1

f1

==

A2

f2

OO

. . . Ak

fk

cc (2.4)

The core C, which itself is a classification, functions as a carrier of information flow between the

fi, and hence between the component classifications Ai. Intuitively, the channel can be viewed

as a “wire” connecting two agents (i.e. classifiers) to a “blackboard” or other shared memory via

which they can exchange information. As the shared memory C is itself a classifier, it admits

a structure regulating how information is written to and read from it; for example, it may be a
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“smart blackboard” that incorporates a function such as a multi-language translation (Fields and

Glazebrook, 2019a). This idea of a channel core as a shared memory is developed in the setting of

interacting channels forming a distributed system (Barwise and Seligman, 1997), for example:

C

B1

φ
==

B2

ψ
aa

A1

f1
==

A2

f2
aa

f3
==

A3

f4
aa

(2.5)

which generalizes the relation between a map reader (here A1), a map (A2), and the territory being

mapped (A3) discussed in §2.1. This idea of distributing semantic relations across multiple systems

underlies much of the following constructions.

In the sense of maximally abstract, while preserving the mathematical structure of interest,

the most general channel on a finite set of classifiers corresponds to the category-theoretic notion

of a (finite) cocone (the prefix “co-” indicating dual, in this case of a cone), with the core C′ the

colimit of all possible upward-going structure-preserving maps from the classifiers Ai (Awodey,

2010). Such a colimit core, provided it exists, can be regarded as “containing” or “binding” in

its structure as a classifier, all of the information that is common to the component classifications

Ai (Fields and Glazebrook, 2019a, provides a detailed construction and examples). The cocone

must commute, i.e. the rightward arrows Ai → Aj between the component classifications must be

such that fi = fjgij for all i, j, where gij can be any composition of arrows Ai → · · · → Aj . This

commutativity requirement makes explicit the role of C′ as a “wire” or shared memory for the

component classifiers (Barwise and Seligman, 1997; Allwein, Yang and Harrison, 2011). It assures

inferential coherence by assuring joint activation of all of the classifiers covered by the cocone core
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C′ and hence joint, parallel use of all possible inferential paths through the cocone diagram (CCD):

C′

A1

f1

88

g12
// A2

f2

OO

g23
// . . . Ak

fk

gg (2.6)

A commuting finite cone of infomorphisms is the dual construction, in which all the arrows are

reversed. In this case the core of the (dual) channel is the limit of all possible downward-going

structure-preserving maps to the classifiers Ai.

We can now define the central idea of a finite, commuting Cone-Cocone Diagram (CCCD) as

comprising both a cone and a cocone on a single finite set of classifications Ai.

C′

A1

f1

88

g12

g21 // A2
oo

f2

OO

g23

g32 // . . . Akoo

fk

gg

D′
h1

ff

h2

OO

hk

77

(2.7)

It is natural to interpret this diagram as depicting a flow of constraint information, represented by

the component classifications, from D′ through a set of component classifiers to C ′; as noted above,

this “information flow” is inferential in a natural sense. Commutativity here requires that any path

from D′ to C ′, including any number of lateral maps between component classifiers, yields the same

result; this assures that all available inferential paths are brought to bear on the “input” encoded by

D′, and hence assures inferential coherence. The bidirectional maps Ai ↔ Aj between component

classifiers are naturally interpreted as encoding mutual, lateral constraints on the behavior of the

component classifiers; these are logical constraints imposed by the component classifiers on each

other. The maps fi and hj can be arbitrarily finitely expanded by inserting intermediate “layers”

of additional classifications, e.g. fi : Ai → C ′ ⇒ fi = fibfia : Ai → Bi → C ′ for some intermediate

classification Bi; hence a CCCD can have an arbitrary finite number of layers of classifiers. Below

we will explain how this descriptive mechanism can be applied, and then employ it to represent
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Process-1 problem solving.

2.4 Using CCCDs to model object recognition

Here we elaborate on the intuitions behind the construction of the CCCD as introduced in the

previous section, and demonstrate its utility in the context of visual object identification. The

most basic and most salient feature of the construction is that it provides a means of capturing a

simultaneous upward and downward flow of semantic constraints implemented by the dynamics of

the object-recognition process. This already makes clear the structural similarity between CCCDs

and recurrent neural network models. The formal relationship between a cocone diagram and a

general feedforward neural network has been developed in detail (Kikuchi et al., 2003); reversing

the arrows, and superposing yields a recurrent network.

A system capable of both object history construction and its dual, a form of category learning,

necessitating construction and maintenance of a “single-entity” category, was presented in Fields

and Glazebrook (2019b). Here we applied CCCDs to model the process of visual object catego-

rization, and individual recognition (i.e. the categorization to a single-entity category) from the

level of instantaneous spatially-mapped static features and motion vectors, through timestamped

object files, to temporal sequences of categorized object tokens embedded in episodic memories

(see Treisman, 2006; Flombaum, Scholl and Santos, 2008; Zimmer and Ecker, 2010; Fields, 2011,

2012, 2016, for relevant background). The basic intuition and methodology we briefly recall as fol-

lows. Each layer in this process corresponds to a network of mutually-constraining classifiers, with

constraint information collected over progressively longer clock times as the level of abstraction

increases. The model can be summarized as stating that each detectable feature (technically, the

classification criteria that detect each detectable feature) is the core of some cone of classifiers, and

every object token (technically, the classification criteria that define each object token) is the core

of some cocone of classifiers. The central idea is that of category-theoretic duality: every compo-

nent classifier at every level serves as both a token that is classified by progressively more abstract

types moving up the hierarchy, and as a type that classifies tokens at levels below it. Consistent

with the global duality of a CCCD, these “upward-going” roles can also be reversed, viewing every
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component classifier at every level as both a token that demonstrates the mutual consistency of

the types above it, and as a type that is shown to be consistent with some, but never all, of the

other types at its level by at least one token below it. A classifier that identifies the static feature

[black], for example, demonstrates consistency along the color dimension it defines between all black

objects; similarly the classifier that identifies instances of the abstract category [cat] demonstrates

consistency along the dimensions defined by its constituent properties between all object tokens

representing cats. We can reasonably expect that such a general scale-free architecture can be

fruitfully applied to other sensory modalities, both functionally and neuro-architecturally (as for

instance in Hochstein and Ahissar (2002)).

An object categorization or object recognition problem is solvable, in this CCCD representation,

if and only if a (colimit) cocone over the relevant subset of classifiers exists; the existence of such

a cocone assures, in turn, that this subset of classifiers is fully bidirectionally linked, and hence

can be coherently activated (Fig. 1). Solutions are dense if almost all subsets of classifiers have

cocones and hence correspond to identifiable categories or objects; they are sparse if relatively few

subsets have cocones. Perceptual systems tend to be sparse; most collections of arbitrarily-selected

features do not correspond to identifiable objects. Abstract systems, e.g. the binary representation

of numbers, may be dense. Fields and Glazebrook (2019b) also show how to extend this model to

CCCD representations of mereological relations, thus capturing the semantics of containment for

structured, multi-component objects and events. These models make use of the association of both

induced local logics (Barwise and Seligman, 1997; Seligman, 2009) and finite-element geometries

(Cordier and Porter, 1989; Gratus and Porter, 2006) with networks of classifications (see Fields and

Glazebrook, 2019a, for details). Overall, the CCCD design is meaningful, not only for encompassing

distributed systems, but also for a wide range of types of two-way parallel processing; for instance,

with −→ representing “associative”, and ←− representing “analytic” relative to a suitable choice

of  (e.g. Baars and Franklin, 2003; Sloman, 1996).
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Fig. 1 : An object recognition problem is solved when a cocone above the relevant

subset of classifiers exists. Lower-level features (i.e. cores of cones) typically map to

many classifiers, which in turn may map to distinct categories or individual objects

(i.e. cores of cocones). Individual objects are treated as single-member categories as in

Fields (2012).

The downward flow of constraints in a CCCD provides a natural model of attention or, in

Bayesian terms, precision adjustment (Fields and Glazebrook, 2019b). Modeling anything beyond

binary attentional control requires a non-trivial notion of the “weight” of an arrow in a CCCD, a

notion most naturally modeled by a probability structure (i.e. by requiring all weights in or out

of a node to sum to unity). Such structures can be represented as classifications, with discrete

probability spaces corresponding to finite classifications (Allwein, 2004; Allwein, Moskowitz and

Chang, 2004); again see Fields and Glazebrook (2019a) for details. We address the general issue of

probability in a Bayesian framework in the next section (§3).
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This classifier-based approach can be contrasted with the pattern-based approach of Ehresmann

and Vanbremeersch (2007); Ehresmann and Gomez-Ramirez (2015), which makes similar use of the

cocone construction to represent upward-going pattern abstraction and hence categorization. † If

we identify patterns in such an abstracted sense with types as defined by Barwise and Seligman

(1997), and take the colimit to represent a binding agent in a hierarchical structure, then a classifier

in the current sense can be considered to represent the (logical, inferential) process of identifying

a pattern. As all types serve as tokens one level lower in the inferential hierarchy, a classifier is in

this case a pattern transformation, i.e. a mapping from one “cat-neuron” to another. With these

identifications, each “object” in Fig. 1 (e.g. the “shape” feature) is implemented by a network of

neural connections, and hence can be identified with the effective mapping between functionally-

definable groups of conditionally-coactive neurons; the arrows in Fig. 1 are implemented by the

dynamic process of transferring activation from one “layer” of functional connectivity to another.

2.5 From object recognition to Process-1 problem solving

It is commonplace to view problem solving as a kind of perception: one is faced with a problem and,

perhaps after some deliberative (i.e. Process-2) thought, “sees” an answer. Intuitive (i.e. Process-

1), along with insightful problem solving are generally described in perceptual terms (Kounios and

Beeman, 2015). Chater (2018) takes this a step further, proposing that all problem solving is

essentially perceptual.

This common view of problem solving is consistent with, and indeed entailed by, the “Bayesian

Brain” hypothesis that the brain is a Bayesian optimizer, or at least a “Bayesian satisficer”, the

goal of which is to maximize the predictability of its environment (Knill and Pouget, 2004; Friston,

2010; Clark, 2013; Hohwy, 2013). With this hypothesis, the organizational structure and algorithms

(in this case, Bayesian inference) of problem solving are domain-independent, although both the

inputs (posterior probability distributions) and the knowledge (prior probability distributions) to

†A “pattern” in this latter approach models an activation pattern (a “cat-neuron” in the terminology of Ehresmann
and Vanbremeersch, 2007) over a subset of conditionally jointly-activated neurons or, more technically, a class of
functionally-equivalent (in the context of the overall categorization system) jointly-activated subsets of neurons.
Such a “cat-neuron” is the colimit, in the construction of Ehresmann and Vanbremeersch (2007), of all such (classes
of) synchronous assemblies of neurons that are activated by the same input, the colimit representing a kind of “binding
agent” in a hierarchical structure.
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which they are compared are domain-specific, and the processing is at least partially modularized.

Substantial evidence now supports this view, though particular models, such as HPC, may differ in

details (e.g. Brown et al., 2013; Friston, 2010; Maloney and Zhang, 2010; Parr, Rees and Friston,

2018; Spratling, 2016, 2017; Badcock et al., 2019, see Bar (2009); Grossberg (2013) for prediction-

based models that are not Bayesian). We assume a broadly Bayesian, predictive-coding model of

problem solving here, deferring details beyond those covered previously (Fields and Glazebrook,

2019b, 2020) to future work. We claim, in this case, that the bidirectional flow of constraints in

problem solving can, in general, be represented by a CCCD. The conditions for problem solution

are the same as for object recognition: a cocone must exist over the subset of classifiers coherently

activated by the input. As described in §2.3 above, coherence is assured by the commutativity of

the CCCD.

Viewing Bayesian inference generally as implemented by a CCCD subtly alters its standard

interpretation. As noted earlier, a cocone by definition represents what is common to the classifiers

beneath it: this is a consequence of the commutativity requirement. The classification at the

“top” of a CCCD – e.g. the cat classifier in Fig. 1 – can, therefore, be regarded as encoding a

consensus among the classifiers below it. Consistent with the usual competitive interpretation of

Bayesian inference, this classifier produces a single “best” answer given its input – a cat, or not

– but the satisfaction relation it implements is effectively a consensus satisfaction relation (Fields

and Glazebrook, 2020). As its input is, in Bayesian terms, the posterior distribution at its level

in the hierarchy, this interpretative point can equally well be made by considering the posterior

distribution itself to be a consensus distribution resulting from the domain-specific contributions of

the contributing lower-level classifiers. “Consensus” implies a loss of information about potentially-

conflicting details, i.e. a coarse-graining. This loss of information is complemented by the gain of

semantic information, e.g. about function or expected behavior, that is only encoded at higher

levels of the categorization hierarchy (Fields and Glazebrook, 2019b).

This Bayesian picture of problem solving as generalized perception applies straightforwardly,

however, only to Process-1 problem solving. There is, in particular, nothing about either the

process of classification or the structure of a CCCD to suggest the discontinuities, backtracking,
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or searches for additional relevant information typical of Process-2 problem solving. Process-2

problem solving may, nonetheless, be subjectively Bayesian, though typically it is not (Kahneman,

2011). Bayesian or not, it typically involves experienced subjective probabilities, whether prior,

posterior, or both. These are encoded by epistemic feelings, often described in terms of “degrees

of belief” or “degrees of assent” or “willingness to bet” on an outcome (however see Eriksson

and Hájek (2007) for a discussion of the problems that arise when one tries to define subjective

probabilities in these terms). Process-2 problem solving typically also involves feelings of familiarity,

recognition, agency, ownership, confidence, doubt, and frustration as well as experienced beliefs,

goals, questions, intermediate steps, and emotions. As with more traditional emotions (Barrett

and Simmons, 2015; Barrett, 2017; Seth, Suzuki and Critchley, 2012; Van de Cruys, 2017), there

is every reason to consider such feelings as generated by a predictive-coding architecture. They

are implemented, at least in GNW-type models (e.g. Baars and Franklin, 2003; Baars, Franklin

and Ramsoy, 2013; Dehaene and Naccache, 2001; Dehaene, Charles and King, 2014; Shanahan,

2012; Wallace, 2005), by large-scale activation patterns spanning much of the cortex (particularly

anterior insular, anterior cingulate, and medial prefrontal cortex) and extending into the midbrain

(particularly basal and parathalamic “reward” nuclei and amygdala; see McCall and Franklin (2013)

for an overview of programmable architecture for workspace predictive coding). As Shea and Frith

(2019) emphasize, all such epistemic feelings are about cognitive states; hence GNW models that

include them are intrinsically metacognitive. Critically, however, such models are not required by

this to represent the “higher-order” metacognitions – “I think I believe X” – sometimes encountered

in Process-2 cognition. Both problem solutions and their associated epistemic feelings are co-

represented as “global broadcasts” within the GNW, as discussed in more detail below (§4.1).

From an implementation perspective, the GNW comprises salience, default-mode (DMN), and

executive control (ECN) networks (Hagmann et al., 2008; Menon and Uddin, 2010; Sporns and

Honey, 2006; Uddin, 2015; van den Heuvel and Sporns, 2013) with the highest degree of mutual

connection comprising the connectome “rich club” (Sporns, 2013) or the workspace connective core

(Shanahan, 2012).

How such large-scale, episodic processes, with their relatively long durations and rich experien-
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tial content relate to the uninterrupted bidirectional flow of constraint information through mod-

ularized, effectively domain-specific channels postulated by either CCCD or hierarchical Bayesian

network models is the main question posed in this paper. To begin to address it, we focus first

on the epistemic feeling without which deliberative problem solving would be hard to define, the

feeling of subjective probability.

3 Subjective probabilities, implicit and explicit

From the ‘perceptron’ model (Rosenblatt, 1961) to current deep learning systems (LeCun, Bengio

and Hinton, 2015), neuromorphic computers (Schuman et al., 2017), and computational models of

processing pathways in brains (e.g. Chadhuri et al., 2015; Bezaire et al., 2016), relatively simple

processors linked by weighted connections have been used to model computation in networks of

neurons or abstracted neuron-like elements. Models of neural circuits as Bayesian predictive-coding

systems are no exception (Bastos et al., 2012; Kanai et al., 2015; Shipp, Adams and Friston, 2013;

Spratling, 2016, 2017). It is natural to interpret the connection weights in such models as encoding

probabilities of information flow from one model component to another; as discussed in §2.3, this

interpretation is also natural for CCCDs as networks of infomorphisms (Allwein, 2004; Allwein,

Moskowitz and Chang, 2004). The encoding of probabilities by connection weights is implicit or

procedural (Johnson-Laird, 1977); as Sanborn and Chater (2016) point out, an explicit or declara-

tive encoding of the probability distributions and calculations assumed by typical Bayesian models

is computationally infeasible in a network architecture. Such implicitly-encoded probabilities are

“subjective” in a very natural sense: they represent the computing system’s representation of the

strength of association between the sending element and the receiving element, and hence the

strength of association between whatever these processing elements represent in the context of the

computation. As the values of these connection weights are typically set by learning – including

in those cases where measured values from biological neurons are used – they reflect the develop-

mental and experiential history of the system they characterize, and are thus unique to it. Here it

is relevant that, in the context of prediction error, Barrett (2017) proposes that all new learning is
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concept learning, since the brain condenses a redundancy of firing patterns into more efficient, more

cost-effective multi-modal summaries, stored within limbic cortices to construct lower dimensional

such summaries geared to abstraction.

Experienced subjective probabilities, from an inner-speech statement that the probability of a

fair coin flip landing heads is 50% to a “gut feeling” that a proposed risk is too high, are how-

ever explicit representations corresponding, in GNW models, to (components of) GNW activation

patterns. Experiences of the former kind are commonly called “conceptual”, while the latter are

“nonconceptual” (Arango-Muñoz, 2014), but both are declarative in the sense of being explicitly ex-

perienced. While experienced subjective probabilities per se have been somewhat neglected within

the literature on epistemic feelings, experiences of confidence in a belief or an answer are broadly

acknowledged as epistemic feelings (Arango-Muñoz, 2014; Proust, 2015; Schwarz, 2012) and a sub-

stantial literature addresses their implementation (e.g. Koriat and Levy-Radot, 1999; Bach and

Dolan, 2012; Koriat, 2012; Meyniel, Sigman and Mainen, 2015; Paz et al., 2016; Navajas et al.,

2017). Meyniel, Sigman and Mainen (2015) explicitly identify felt confidence with subjective prob-

ability, with the acknowledgement that feelings of confidence typically admit only qualitative, not

quantitative, gradation. While experiments that demand a quantitative expression of subjective

probability – e.g. betting experiments – receive one, this quantitative statement is the output of a

problem solving process (even if it is only a memory-access process), and is accompanied by quali-

tative felt confidence. Except in the simplest cases, the human experience of subjective probability

is rough and ready (Kahneman, 2011); the simulation mechanism proposed below §5) provides an

explanation of why this should be so.

Why would cognition be organized this way, with subjective probabilities that are mostly im-

plicit and not experienced, encoded by weights on network connections as expected on Bayesian

Brain models, but sometimes explicit and experienced, either as felt qualitative confidence, or, as

conceptualized and quantitated in a modality such as inner speech? While experienced subjec-

tive probabilities, in the form of feeling of confidence, accompany solutions reached by Process-1

problem solving, in Process-2 problem solving such feelings appear to play a guiding or directing

role, with explicit computations using explicitly represented, quantitative subjective probabilities
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as called for by normative decision theory as an extreme example. The question of why subjective

probabilities are experienced can, therefore, be considered a special case of the question of why

conscious, deliberative cognition, i.e. Process-2 exists: if only Process-1 existed, they would seem

unnecessary. Yet many animals – not just humans – appear to experience feelings of confidence;

SAT experiments suggest such feelings extend to insects (Heitz, 2014). This question of why such

feelings exist is hence at bottom a question about evolution, and its most compelling answer is

flexibility (see, e.g. Dennett, 2017, for a recent attempt to provide a fully worked-out version of

this answer)‡. A flexible system can devote more resources to searching either the environment or

memory for information, i.e. exhibit SAT, when the expected consequences of an error are seri-

ous. What is the connection between devoting resources to search – particularly of memory, where

waiting for a changing environment to reveal more information is not an issue – and experienced

subjective probabilities? We suggest here that this search process is effectively a process of reverse

engineering, with the aim of discovering the probabilities embedded in the Bayesian network. To

make this suggestion precise, we first consider fast, Process-1 cognition in the context of a GNW-

type architecture that includes interoception as well as perception, and show how such a model

naturally supports epistemic feelings as synthetic interoceptions. We then ask how such feelings

could play a guiding role in Process-2 cognition.

4 Epistemic feelings as synthetic interoceptions

4.1 A GNW model of Process-1

While GNW models are often presented and criticized as models of consciousness per se (see e.g.

the recent exchange between Dehaene, Lau and Kouider, 2017, and Carter et al. (2018)), they are,

strictly speaking, models of information access, and hence of “access consciousness” (Block, 1995).

Even when epistemic feelings are recognized as metacognitive (Shea and Frith, 2019), it is access to

‡Dennett (2017) characterizes Process-1 as relatively inflexible “competence without comprehension” that is avail-
able, to varying degrees, to all organisms. Process-2 is, from an evolutionary point of view, more recent and possibly
unique to human cognition (see also Evans (2010); Frankish (2010)). The paradigmatic descriptions in, e.g. Kahneman
(2011) can reasonably be tied to cultural theories of ‘duality’, as in the anthropological setting of Nisbett (2003) who
compares the traditional modes of Western analytic/rational-based thinking to those of the Asian intuitive/holistic
thinking. The warnings of Henrich, Heine and Norenzayan (2010) are clearly of relevance here.
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such feelings that is granted by the GNW. The process of “ignition” that grants conscious access

to percepts, memories, emotions, epistemic feelings, or other contents has been suggested, from a

PP/HPC point of view, to depend on the magnitudes of prediction errors crossing some context-

dependent threshold (Hohwy, 2013; Barrett, 2017; Whyte, 2019). We do not adopt any particular

account of this process here, but only assume that “ignition” occurs by some means or other.

Early GNW models largely focused on how information from either perception or memory is

made available for the control of intentional behavior, including the verbal reporting of conscious

contents (e.g. Baars and Franklin, 2003; Dehaene and Naccache, 2001). In these models, the GNW

comprises a highly-connected prefrontal to parietal network (Dehaene and Naccache, 2001; De-

haene, Sergent and Changeux, 2003) that serves effectively as a shared working memory accessed

by function-specific modules, admission into which (“ignition”) requires both sufficient amplifica-

tion from the source module and sufficient feedback from the GNW itself (for recent reviews, see

Dehaene, Charles and King (2014); Mashour et al. (2020); for criticism, see Koch et al. (2016)).

With increased understanding of the role of subcortical structures and interoception of bodily state

in regulating salience, and the representation of the self, largely via insular and ventrolateral frontal

cortex (e.g. Craig, 2009, 2010; Menon and Uddin, 2010; Uddin, 2015), and of the contribution of

insula – cingulate – frontal connectivity to executive control (e.g. Dajani and Uddin, 2015; Dosen-

bach et al., 2008), the scope of GNW models has increased to include these effects (Baars, Franklin

and Ramsoy, 2013; Dehaene, Charles and King, 2014). In this broadened conception, the GNW

can be seen as making the current states of the “world model” derived from perception and mem-

ory, and the (internal) “body model” derived from interoception mutually accessible, and hence as

enabling regulatory actions on the body to be coordinated with behavioral actions on the world

(Fig. 2). As emphasized by Barrett (2017), such coupling of world and body models is essential

to the maintenance of allostasis, and can be viewed as the primary “self modeling” function of

the DMN.§ This joint representation promotes the options available for active inference – altering

§Barrett (2017) also emphasizes that such allostasis-maintenance functions must be universal across animals. The
DMN is best known as the primary locus of self-referential rumination (e.g. Buckner, Andrews-Hanna and Schacter,
2008; Qin and Northoff, 2011) and hence much of Process-2 thought, functions that are presumably human-specific.
Evidence that individual differences in DMN connectivity correlate with genetic differences observable in pedigree
studies (Glahn et al., 2010) suggests significant recent evolutionary change. Whether ancient and recent functions of
the DMN can be teased apart at the architectural level remains to be seen.
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beliefs (prior probabilities), altering sensory input (posterior probabilities), or altering the relative

importance of the two (Bayesian precision) (Friston, 2010; Friston et al., 2015) – to organism-

scale options of altering the self through regulation, the world through behavior, or what is most

salient through attention shifts. Attention, itself, here corresponds to inferring precision via sensory

signals; optimizing this precision accounts for attention within perceptual inference in which the

registering, or non-registering, of simultaneous stimuli evokes a biased competition towards attain-

ing to a Bayesian optimal outcome (Feldman and Friston, 2010). In the overall perspective, these

kinds of integrative, organism-scale models have recently been explored in a hierarchical Bayesian

framework by Badcock et al. (2019), although not in explicit GNW terms.

Fig. 2 : Simplified cartoon of a GNW multi-parallel distributed architecture incorpo-

rating both perception of the external world and interoception of bodily state, and both

action of the external world (i.e. overt behavior) and regulation of bodily state (e.g.

regulation of hormonal signals and blood pressure). Bidirectional vertical arrows indi-
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cate non-GNW modulatory connections between input and output processing modules

on either the perception or interoception side; green dots represent GNW hubs. Upper

and lower dashed arcs connecting perception and action systems are lateral (i.e. cross-

modulatory) connections induced by requiring the GNW nodes to be cores of cocones

spanning both world- and body-directed systems. These arcs transfer the information

needed to generate epistemic feelings as synthetic interoceptions blending cortical with

subcortical information.

Following the logic of §2.5, it is natural to interpret the central GNW nodes in Fig. 2 as

access-providing processes instead of states or connections, and hence to interpret Fig. 2 itself

as an extended CCCD with the central GNW nodes as cores of cocones. Doing so requires, to

maintain commutativity across all classifiers in the CCCD, the existence of lateral, cross-modulatory

connections between the world- and body-directed systems. This interpretation reconceptualizes the

GNW from an arena for competition between the outputs of independent modules, to a mechanism

for generating a consensus combined body-world model that maximizes predictive power.

The GNW model in Fig. 2, like all such models, explicitly assumes that the agent it models

is conscious (up to salience) of the outputs of its perception and interoception systems, and of

the inputs to its body-directed and world-directed action systems; in standard models these are

identical. It is, again like all such models, consistent with the agent having inner, imaginative

experience such as inner speech or imagery, i.e. with activation of perception or interoception

systems by top-down inputs (Edelman, Gally and Baars, 2011; Kosslyn, Ganis and Thompson,

2001; Fields, 2002). It supports complex, perceptually guided behaviors such as visual navigation

or language use, including reports from memory, and admits representations from different domain-

specific systems to interact and subsequently be co-processed. That metacognitive parameters are

representable in the workspace is evidenced from explicit reports of confidence, how the latter relate

to cognitive load, and programmable, automatic error-detection (Shea and Frith, 2019).

Epistemic feelings are not only allowed by this model, but are required as consequences of

the lateral connections between world- and body-directed systems (Barrett and Simmons, 2015;

Barrett, 2017; Seth, Suzuki and Critchley, 2012, cf. Shea and Frith (2019)). Both rapid detection
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of (particularly severe) prediction errors by the frontolimbic threat detection system (Shechner

and Bar-Haim, 2016) and fast autonomic feedback triggered by midbrain-directed cingular-cortex

conflict signals (Sequeira et al., 2009; Critchley, Eccles and Garfinkel, 2013) can be expected to

couple vascular, visceral, and other bodily sensations to cortical representations of prediction error

or its rate of change. Hence we regard epistemic feelings as “synthetic interoceptions” that combine

midbrain-mediated bodily interoception, e.g. via amygdala or reward system activation, with

information from the cortex that reflects the flow and rate of perceptual and memory processing

(Winkielman et al., 2003). Feelings of perceptual familiarity, for example, blend information from

the perirhinal cortex that reports categorization fluency (Eichenbaum, Yonelinas and Ranganath,

2007) with introceptively-sourced information, with systematic failures leading to misidentification

syndromes (Feinberg and Roane, 2005). Feelings of confidence and doubt blend information from

insular and cingulate cortex that reports processing fluency, or in Bayesian terms, rate of reduction

of prediction error (Brown et al., 2013; Joffily and Coricelli, 2013; Pliushch, 2015; Van de Cruys,

2017), and the presence or absence of cognitive conflict (Craig, 2009) with introceptively-sourced

information, a process dramatically revealed during insular cortex seizures (Gschwind and Picard,

2016). Feelings of ownership of experience and “reality” blend information from both anterior

prefrontal and insular cortex (Craig, 2010; Simons, Garrison and Johnson, 2017) with introceptively-

sourced information, producing varying feelings of unease when source attribution is uncertain,

and pathology, e.g. schizophrenia (Simons, Garrison and Johnson, 2017) or Cotard’s syndrome

(Debruyne et al., 2009), when this uncertainty is severe or chronic. Sampling models reproduce

evidence from psychophysics experiments for short-term choice confidence (Koriat, 2012; Paz et al.,

2016), consistent with the suggestions of Sanborn and Chater (2016) that “prior” probabilities are

not fixed a priori and that Bayesian “inference” in the brain is implemented mainly by Bayesian

sampling, and of Bar (2009) that low-resolution information drives the initial stages of processing,

with higher-resolution information brought to bear as SAT requirements demand. Substantial

individual differences in the types of processing-fluency information contributing to feelings of

confidence have also been reported (Navajas et al., 2017). We can speculate that the generation of

other epistemic feelings uses similar sampling methods, that such feelings are often low-resolution
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and hence qualitatively indistinct, and that there are substantial individual differences in what is

sampled and experienced in given circumstances; all these remain to be tested.

Epistemic feelings generated as synthetic interoceptions are “metacognitive” in the sense em-

ployed by Fleming and Daw (2017); they report an assessment of the performance of a separate

system, here the perception component of the GNW. The are not, however, yet metacognitive in

the sense of mechanistically regulating Process-2 problem solving. The GNW model in Fig. 2 does

not provide any specific mechanism for awareness of subjective probabilities as explicit, quanti-

tative conceptual representations, e.g. their formulation as quantitative probability reports. Nor

does it provide any mechanism for intentionally interrupting a problem-solving process in order to

search for more information or “think about” the problem. ¶ It provides, in other words, a model

of Process-1 problem solving, included arbitrarily-complex problem-solving abilities that expertise

has rendered automatic (Bargh and Ferguson, 2000), but it does not provide any specific mecha-

nism for Process-2 problem solving. The model supports the experiencing of epistemic feelings in

the course of Process-1 problem solving, but does not provide a mechanism to support their role in

Process 2. In this respect, it is “flat” in the sense of Chater (2018).

Process-2 problem solving is induced under a wide variety of conditions, including Process-1

unsolvability (e.g. multi-digit arithmetic), conflicting Process-1 solutions (e.g. conflicting percep-

tions of a Necker cube, or conflicting political intuitions), or motivational settings that bias SAT

toward accuracy (e.g. competitive exams). What kind of metacognitive process could effect this

process-switching behavior? How does this process couple with the “flat” GNW of Fig. 2? What

role do epistemic feelings play in triggering Process-2 induction? Assuming that Process-1 has

failed, which kinds of problems become solvable by inducing Process 2, and which kinds remain

unsolvable?

¶In this respect, Arango-Muñoz (2014) suggests that some epistemic feelings are non-conceptual experiences. An
individual need not have to realize specific concepts of certainty or uncertainty in order to have epistemic feelings,
such as feeling certain or uncertain about something (e.g. on a dull day an individual may grab at an umbrella
before leaving home while thinking about details of her conference paper). In a similar spirit, Proust (2015) proposes
epistemic feelings to be both intentional and directional, and thus seen as types of mental affordances that induce a
cognitive response, and then determine how to implement it.

29



4.2 Process-2 as iterated Process-1

The CCCD formalism introduced in §2.3, (2.6), (2.7), allows us to formulate this question precisely,

and places a strong constraint on its answer. As noted in §2.5, a problem is solvable by Process-1

only if the cocone encoding its solution exists. Hence we can represent the first two Process-1 failure

conditions above as in Fig. 3: in either case, problem solving failure occurs because the cocone

structures required to link, and hence establish consensus between, the classifiers activated by the

input do not exist. The missing structures include, critically, the lateral maps between classifiers

that assure commutativity. Identifying the required cocone cores with GNW nodes as in Fig. 2,

these lateral maps must not only connect classifiers within the perception and interoception systems

individually, but also establish lateral links between these systems. Process-1 failures are, in these

cases, partial solutions within the perception system that do not sufficiently activate the intero-

ception system to generate the “confidence” signals required for cocone completion. Competition

within Process-1 due to a lack of consensus as in Fig. 3b produces instability at the GNW level,

e.g. conflicting opinions or the visual instability of a Necker cube. Even if Process-1 is successful,

insufficient lateral activation of the interoception system leads to failure at the GNW level that is

experienced as a lack of confidence. Motivational settings such as competitive exams or high-stakes

bets, place the required confidence bar high, hence strong lateral activation is required to complete

and hence accept a Process-1 solution.
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Fig. 3 : Failure modes for Process-1 problem solving. a) Failure to complete a cocone

(indicated by ‘?’) over a set A1...Ak of activated classifiers. Dashed arrows indicate

missing maps; note the absence of the lateral maps between classifiers that are required

for commutativity. b) Failure to complete a cocone spanning two partial solutions.

If reaching a solution is completing a cocone that spans both perception and interoception

systems, then the key to problem solving is activating the right collection of classifiers within each

system. This is the task of the ECN (see e.g. Menon and Uddin (2010)). The tools available are

behavioral or regulatory change and attention switching, or in Bayesian terms, modification of either

the posterior distributions or the precision assignments. Modifying prior probability distributions

– in a CCCD, the satisfaction relations of component classifiers – is a time-consuming learning

process; however, the prior probability distributions that are deployed in response to an input

can be varied by either behavior / regulation or attention switching. Critically, these ECN tools

apply not just to world-directed behavior and the perception system, but also to body-directed

regulation and the interoception system. The broad correlation between low stress, positive affect,

and problem-solving performance (e.g. Arnsten, 2009; Kahneman, 2011; Kounios and Beeman,

2015) makes sense in this context. If prediction errors remain sufficiently small that ECN activity

remains below the threshold of consciousness, in particular, a “flow” state in which performance is

both fluid and enjoyable results Csikzentmihalyi (2014).

The effect of either behavior / regulation or attention switching is to re-initiate Process-1

with either a new input or a new collection of classifiers, starting a new “cognitive cycle” in the

terminology of Chater (2018). This is effectively a feedback process, as shown in Fig. 4a: partial

or intermediate results obtained in one round are available to be attended to and hence fed back as

inputs in subsequent rounds, and may or may not be valuable. The information fed back includes

the confidence values obtained on earlier rounds (Folke et al., 2016). Success yields a Process-1

solution, i.e. a completed cocone over the activated classifiers.
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Fig. 4 : Problem solving as an iterative process. a) Feeding partial solution information

back (red arrows) into a Process-1 CCCD, either by behaving in the world (or regulating

the body) and detecting the results by perception (or interoception), or by switching

attention, until a solution is reached. Here the world (or body) serves as a short-term

memory for partial results. In a Channel Theory sense, the depiction is effectively a

sequence of distributed systems through time. b) Employing a time-indexed classifier

as a short-term memory allows partial solutions to a complex problem to be represented

as a sequence of “steps” toward an overall solution. Blue triangles represent the upper
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cocones of CCCDs, which may or may not include the same classifier layers; red arrows

represent feedback via either behavior/regulation or attention switching. Over a suitable

time frame (as t increases), C(t) approaches a colimit; in other words, a “binding agent”.

In task environments requiring speed, i.e. task environments in which task-relevant input fea-

tures are changing within the 200 - 300+ ms required for a single Process-1 cycle (Sergent, Baillet

and Dehaene, 2005; Schendan and Maher, 2009; Zmigrod and Hommel, 2010), the world (and / or

body) serves as an effective 1-step short-term memory; hence feedback can, indeed must given the

time constraints, be passed through the world / body. As the time available for problem solving

increases to minutes, hours or even days, however, such external feedback is insufficient; even if the

environment is modified by a process such as taking notes, additional internal memory resources

must be committed to recording the fact that such actions were taken. This additional internal

resource must, in addition, be able to sequence and link into a causal chain the Process-1 cycles that

are deployed. These recording, sequencing, and linking functions are all provided if it is assumed

that the internal memory resource has the form of a temporally-indexed cocone (Fig. 4b). The core

of this cocone is a classifier, one that solves a multistep problem over extended time by iterating

Process-1 cycles.

Process-2 problem solving in a CCCD-based model is, therefore, iterated Process-1 problem

solving. It succeeds, just as Process-1 succeeds, when it constructs a complete cocone; the cocone

core in this case represents the solution as a satisfaction relation. When faced with a problem that

cannot be solved by Process-1 and given sufficient time, the goal of the ECN is to construct such

a cocone by a process of active inference. Each step in the process is accompanied by synthetic

interoceptions as experienced as feelings of doubt, confidence, being on the right or wrong track

(see e.g. the subjective reports compiled by Shaw, 1999; Amabile et al., 2005). The interoceptive

component of the solution state is experienced as knowledge, belief, assent, confidence, or other

positive outcome markers, perhaps including the “Aha!” of long-delayed insight.

This model is consistent with Chater’s view of insight as resulting from “trying it again”, or

“improvising as we go along” in a different attentional context (Chater, 2018). It is inconsistent with

any model that assumes a specific “rational” alternative to Process-1 problem solving. Process-2
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cognition is, on this model, not intrinsically better than Process-1 cognition, just slower. Its benefit

derives from its ability to work on subproblems sequentially, feeding back partial results at each

stage as inputs. This benefit comes at minimal evolutionary cost: only a single additional layer,

with the same architecture and solution conditions, needs to be added to the underlying Process-1

system.

As noted by Evans (2008) and Frankish (2010), and emphasized by dual-process critics such

as Melnikoff and Bargh (2018), sharp distinctions between the features typically characterizing

Process-1 and Process-2 cognition and reasoning may not be fully justified. For instance, Evans

(2008) suggests a possibility of Process-1 combined with a blend of Process-1 and Process-2, where

the need for such a blend is tied to a limited capacity working memory. Barrett, Tugade and Engle

(2004) have similarly considered that complex tasks may be sequentially implemented by domain-

specific Process-1 operations, but under the control of a domain-general Process-2 mechanism for

allocating attention. Such interleaving of Process-1 and Process-2 strategies, driven by SAT and

working-memory availability, is understandable in the framework proposed here.

5 Reverse-engineering subjective probabilities

We are now in a position to address the question raised and deferred in §3: what enables people

to explicitly estimate their subjective probabilities for events, particularly in cases in which a

convenient, memory-retrievable formula for calculating them is not available? How, in particular,

are people capable of performing Bayesian reasoning, even rough-and-ready Bayesian reasoning,

outside of simple situations like card games in which probabilities can be remembered or recalculated

explicitly? It is well known that people do not do this very well (Kahneman, 2011). At question

is how they can do it at all. How does anyone know what their “degree of belief” in any given

proposition is? If asked, what are they doing when trying to come up with an answer? Why is

answering such a question typically a slow, deliberative process?

The model of Process-2 problem solving as iterated Process-1 problem solving outlined above

suggests a natural answer to this question. Except in cases of rote learning, explicit subjective
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probabilities – degrees of belief – are not encoded anywhere, and hence are not available to be re-

trieved from memory. They must instead be inferred, with the feelings of confidence associated with

Process-1 solutions as the only available evidence. Such feelings are, however, both implicit and

qualitative. Making them explicit and precise – as reportable, numerical, subjective probabilities

– requires, we suggest, a reverse engineering process in which multiple Process-1 simulations are

used to generate a range of qualitative responses that can be summarized quantitatively. Such sim-

ulations can be implemented by repeating a Process-1 solution while injecting noise into its input;

such noise injection is widely used to broaden search processes in simulated annealing (Kirkpatrick,

Gelatt and Vecchi, 1983) and related techniques. While it is implausible that the executive system

can generate true noise, high-frequency modulation of precision assignments during problem solving

would provide a noise-like input. “Standards” of high- and low-confidence are also required; inputs

such as “1 + 1 = 2” or “I exist” might provide the former, and “1 = 0” or “black is white” the

latter. The mechanism for summarizing confidence estimates across Process-1 replicates needs only

to be capable of averaging and computing distance of the average from the standards; a quantita-

tive classifier is suitable for this task. We suggest that summary confidence estimates in the form

of explicit subjective probabilities are, when the task demands it, provided as input to Process-2

problem solving as shown in Fig. 5: macroscopic time intervals ∆t – at least 10s of seconds – are

employed to summarize the confidence results from multiple, noise-injected Process-1 replicates of

the original Process-1 solution. This is effectively a reverse engineering process in which the subject

estimates, by running simulations, her degrees of belief in a partial solution.
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Fig. 5 : Summarizing the confidence components of parallel Process-1 solutions to

yield an explicit, reportable representation of confidence as a subjective probability. A

cocone (vertical red arrows) assembles the parallel solutions for a macroscopic interval

∆t into a single representation as a quantitative classifier. These are linked through time

(horizontal red arrow) by the temporally-indexed cocone with the diachronic classifier

C(t) as in Fig. 4b. All other maps are suppressed for clarity.

This mechanism requires no new architectural components to handle explicit subjective prob-

abilities; it merely adds a “layer” of cocone-based processing to Fig. 4. It completely removes,

moreover, the need for such probabilities to be stored in memory. If this mechanism operates in

humans, it is highly unlikely that reportable subjective probabilities will remain constant across

problem-solving contexts for all but the simplest, most easily-calculated examples.
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6 Predictions

The model advanced here rests on two assumptions: 1) that the architecture implementing problem

solving has the formal structure of a CCCD; and 2) that the GNW combines perception of and

action on the world with interoception and regulation of the body. The former is reasonable

mathematically (Fields and Glazebrook, 2019a,b), while the latter is well-supported experimentally

(Baars, Franklin and Ramsoy, 2013; Dehaene, Sergent and Changeux, 2003; Dehaene, Charles and

King, 2014; Mashour et al., 2020). It nonetheless generates a number of predictions, some of which

make contact with existing experimental results.

• Process-2 problem solving that does not employ explicit subjective probabilities is mecha-

nistically simpler than problem solving that does. Hence it is expected to be faster, besides

evolving and developing at earlier stages. As the notion of a probability must be explicitly

learned, it is not clear that this can be tested without circularity.

• Reportable subjective probabilities are neither stored in or retrieved from memory, but syn-

thesized “on the fly”. Hence they can be expected to change with implicit learning, general

experience, and question context. Probability judgements are known to be sensitive to context

and framing (Kahneman, 2011). To what degree they can be generated by the simulation-

based mechanism outlined here is deferred to later work. On a deeper level, it is not clear,

as Sanborn and Chater (2016) point out, that any of the prior probabilities required for

Bayesian inference, even if this is viewed only as satisficing, are well-defined at the implemen-

tation level. To the extent that human behavior displays intrinsic contextuality (Dzhafarov

and Kujala, 2017a; Dzhafarov and Kon, 2018), real-time switching between different sets of

“prior probabilities” may be required. We have shown that the CCCD formalism allows such

switching (Fields and Glazebrook, 2020), but how such a mechanism can be incorporated into

a GNW framework remains to be determined.

• “Noising” by the ECN is required for generation and use of explicit, numerical probabilities.

Such a mechanism would be expected to disrupt normal cognition if dysregulated, consistent
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with theoretical characterizations of autism as a disorder of Bayesian precision assignments

(Lawson, Rees and Friston, 2014; Van de Cruys et al., 2014).

• Epistemic feelings are, in general, synthetic interoceptions as opposed to being purely metacog-

nitive. Hence such feelings should be detectable and reportable in resting states in which

not only are there no external task demands, but internal, imaginative mind-wandering and

rumination are also turned off. The “witness” or “as-such” states sometimes achieved by

experienced meditators (Josipovic, 2019) may be evidence for such activity. Affective feelings

are intermediaries between implicit/automatic (antecedent Process-1) and explicit controlled

(consequential Process-2) thinking, as underlying a putative duality between metacognitive

feelings and metacognitive judgements (Koriat and Levy-Radot, 1999). Likewise, epistemic

feelings are intermediaries in judgements of learning through applying non-analytic heuristics

(Koriat and Levy-Radot, 1999)(cf. Arango-Muñoz (2014)).

• If explicit subjective probabilities are not stored in memory, they cannot be components of

an explicit self model. This is consistent with the “self” being a real-time construct (Craig,

2010) and the “propositional attitude” model of belief (Fodor, 1983) being fundamentally

incorrect, as argued by Chater (2018).

• The CCCD formalism deployed here is equivalent to the standard hierarchical Bayesian for-

malism in situations in which probabilities are non-contextual (in the sense of Dzhafarov and

Kujala, 2017a; Dzhafarov and Kon, 2018) and otherwise well-behaved. However, it generalizes

the hierarchical Bayesian formalism in domains in which probabilities are not well behaved,

and in particular, provides a mechanism for maintaining inferential coherence in the face of

contextuality (Fields and Glazebrook, 2020). While this is at present a theoretical result, not

an empirical prediction, it is a significant issue for the applicability of the theory.

We are currently pursuing a formal analysis of the last of these questions, focussing in particular

on the issue of contextuality.
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7 Conclusion

Damásio (1994) re-instated emotion as a component of cognition 25 years ago. Since that time,

the role of affect in problem solving and decision making has become increasingly well-understood.

Dual-process models have, however, largely relegated this role to Process-1, while Process-2 has

remained, at least in the popular imagination, the domain of the idealized rational agent of classical

decision theory.

Here we have employed some general category-theoretic tools, particularly the CCCD construc-

tion of distributed information flow, together with current GNW models, to argue that Process-2

problem solving is multiply-iterated Process-1 problem solving driven, to a significant extent, by

synthetic interoceptions experienced as qualitative confidence. Process-2 is invoked, in this model,

when the rate of change, or delay between changes, in task-relevant input, including internally-

generated imaginations, is too slow for either the world, or for body states to serve as effective

short-term memories. Quantitative confidence in the form of the degrees of belief of classical de-

cision theory can be reproduced in this model by adding a “layer” to a Process-2 CCCD that

summarizes the results of multiple Process-1 simulations with slightly different inputs or precision

assignments. The CCCD construction provides a built-in mechanism – diagram commutativity

– that enforces inferential coherence. Adapting and extending this mechanism in order to deal

with task environments exhibiting true contextuality (Dzhafarov and Kon, 2018) is an interesting

question relating to the risk of inconsistency in decision-making, which we defer to future work.

Finally, we remark that we have inadvertently, and somewhat surprisingly, connected with two

particular recent advances. Firstly, in understanding the modus operandi of the GNW with respect

to working memory and metacognition (Shea and Frith, 2019). Secondly, the transformations of

Process-1 to a metacognitive Process-2 can be viewed as a “representational exchange mechanism”,

a multi-parallel processing of information based upon the peculiarities and the frequent irrationality

of human decision-making (Cushman, 2020): a “useful fiction” since perfunctory rationalization

imputes a sense of reason upon a possible conundrum when deciding (“fiction”), and “useful”

because the process supports improvising, and improving upon future reasoning (as exemplified in
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Cushman (2020); cf. Chater (2018)).
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