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Abstract: This paper inroduces a variaional ormulaion o naural selecion, paying special aen-

ion o he naure o ‘hings’ and he way ha dieren ‘kinds’ o ‘hings’ are individuaed rom—

and inuence—each oher. We use he Bayesian mechanics o paricular pariions o undersand

how slow phylogeneic processes consrain—and are consrained by—as, phenoypic processes.

The main resul is a ormulaion o adapive ness as a pah inegral o phenoypic ness. Pahs o

leas acion, a he phenoypic and phylogeneic scales, can hen be read as inerence and learning

processes, respecively. In his view, a phenoype acively iners he sae o is econiche under a

generaive model, whose parameers are learned via naural (Bayesian model) selecion. The ensu-

ing variaional synhesis eaures some unexpeced aspecs. Perhaps he mos noable is ha i is no

possible o describe or model a populaion o conspecics per se. Raher, i is necessary o consider

populaions o disinc naural kinds ha inuence each oher. This paper is limied o a descripion

o he mahemaical apparaus and accompanying ideas. Subsequen work will use hese mehods

or simulaions and numerical analyses—and ideniy poins o conac wih relaed mahemaical

ormulaions o evoluion.

Keywords: sel-organisaion; nonequilibrium; variaional inerence; Bayesian; paricular pariion;

evoluion; naural selecion; Markov blanke; renormalisaion group

Dedicaed o he Memory o John O. Campbell.

1. Introduction

This paper is an aemp o show ha some undamens o heoreical evoluion—

and (neuro)biology—emerge when applying he ree energy principle o dynamical sys-

ems wih separaion o emporal scales. I oers a echnical and generic reamen wih

minimal assumpions or commimens o specic biological processes. As such, i does

no borrow rom esablished consrucs in evoluionary heory; raher, i ries o showhow

some o hese consrucs are emergen properies, when seen hrough he lens o he ree

energy principle. In subsequen work, we will use he ensuing variaional synhesis o

consider esablished—and curren—evoluionary heories. Our aim in his paper is o in-

roduce a ormalism ha may be useul or addressing specic quesions—abou evolu-

ionary or developmenal dynamics—using analyic or numerical recipes ha have

proven useul when applying he ree energy principle in oher elds.
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A key phylogeneic process—underlying he developmen and diversicaion o spe-

cies in evoluionary ime—is known as naural selecion, regarded by some as he cenral

organizing principle o biology. While Darwin conceived o naural selecion in erms o

herediy, variaion, and selecion [1,2], he only deailed selecion, as he mechanisms o

herediy and variaion would no be undersood or some ime [3,4]. The inegraion o

Mendelian geneics wih naural selecion in he early wenieh cenury was ollowed by

an inegraion wih molecular geneics [5] in he mid-cenury o orm Neo-Darwinism, or

he modern synhesis. The modern synhesis, along wih he selsh gene hypohesis—pu

orh in he 1970s [6]—provide a largely gene-cenric view o Darwinian evoluion ha

dominaes he curren perspecive.

This gene-cenric view o evoluionary biology has remained largely disconneced

rom phenoypic processes ha impac organisms in developmenal ime [7,8]. Lewonin

characerised his disconnec—beween geneic and phenoypic undersanding—as he

major challenge acing he eld [9]. While some progress has been made in he ollowing

y years, biologiss coninue o highligh he gaps remaining or modelling biology as a

single inegraed process over muliple scales [10–13]. By ‘gene-cenric’, we reer no jus

o heories o sequence evoluion [14], bu also o he cenral role genes (or summary sa-

isics o genes) play eiher explicily or implicily in accouns o phenoypic evoluion.

For insance, he Price Equaion [15] and he closely relaed replicaor equaion [16] o

evoluionary game heory express he relaionship beween he changes in (he average

o) some phenoypic rai over ime. This gene-cenric view relies upon a mapping be-

ween ha rai and he geneic maerial passed rom generaion o generaion bu ocuses

upon he phenoypic eecs o genes as opposed o he alleles hemselves. Similarly, adap-

ive dynamic approaches [17] ypically ocus upon ecological ineracions a a phenoypic

level. The modern ocus upon phenoypic rais reecs he imporance o he ineracion

beween a phenoype and is environmen in deermining ness. However, i is imporan

o noe ha such perspecives do no conic wih he cenral role o geneic inheriance,

and implicily score he ness o genoypes in erms o he phenoypes hey imply.

An organism inheris a se o insrucions or growh and developmen (i.e., an ex-

ended genoype) ha is, in essence, a predicion abou he niche environmen (including

emperaure, humidiy, chemical composiion, available resources, saisical paerns,

ec.). Inerrogaing he phrase ‘survival o he es’ leads o he undersanding o ‘es’

as organisms ha are he bes ‘’ o heir niche environmen [18]. For example, a bace-

rium rom hermal ho springs will ail o hrive in a cool pond because is genoype does

no accuraely predic he niche environmen. Thereore, ‘ness’ is relaive o he niche,

where slow phylogeneic processes have seleced or an exended genoype ha enhances

he growh and prolieraion o organisms in he environmen where he corresponding

species expecs o nd isel.

An organism can also ‘’ isel o he niche hrough adapaion (i.e., acion, learning,

and developmen) during is lieime. For example, a bacerium ha normally subsiss on

sulphur reducion—bu can also survive hrough reducing oxygen—will oulas is sul-

phur-dependen compeiors in an environmen ha is devoid o sulphur. Such an organ-

ism can adap o is environmen hrough learning and opimising or oxygen reducion,

hereby increasing is  o he niche and, implicily, is capaciy o reproduce in a high-

oxygen environmen. In his way, he phenoypic processes can enhance he  o organ-

isms o heir environmen in developmenal ime, and hrough reproducion, phenoypic

processes can lead o he enhancemen o  in evoluionary ime (i.e., across generaions).

As he (exended) genoype o organisms produces phenoypes, phylogeneic processes

over evoluionary ime also impac phenoypic (onogeneic) processes in developmenal

ime.

Here, we oer a synhesis o evoluion and developmen hrough a mahemaical

ramework ha unies slow, muli-generaional (phylogeneic) processes wih single-lie-

ime, phenoypic (developmenal and behavioural) processes using he same principles,

as hey apply o each emporal scale. The ensuing variaional accoun o evoluion ocuses
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on he coupling beween phylogeneic processes a evoluionary imescales and onoge-

neic processes over phenoypic lieimes. In principle, his absrac reamen is agnosic

o specic mechanisms, and could be applied o biological as well as non-biological sys-

ems provided heir ‘ness’ depends upon evens during a lieime, andwhere his ness

inuences dynamics over a generaional scale. This muliscale accoun oregrounds he

circular causaliy ha arises rom he implici separaion o imescales [19].

In brie, we consider slow phylogeneic processes (natural selection) as urnishing op-

down consrains (i.e., op-down causaion) on as phenoypic processes (action selection).

In urn, he acive exchange o he phenoype wih is environmen provides evidence ha

is assimilaed by naural selecion (i.e., boom-up causaion). This onological accoun is

licensed by describing boh phylogeneic and phenoypic processes as selecing (ex-

ended) genoypes and (exended) phenoypes [7,20] wih he greaes ness, where -

ness is quanied wih (ree energy) uncionals o probabiliy densiy uncions (a unc-

ional is a uncion o a uncion).

This ormulaion means ha naural selecion and acion selecion can be described

as updaing probabilisic belies a phylogeneic and phenoypic scales, respecively:

namely, learning and inerence [21–23]. This separaion o scales aords an inerpreaion

o natural selection as Bayesian model selection [24–26], while action selection becomes planning

as inerence [27–30]—boh (appearing o) opimise he same ness uncional: namely,

Bayesian model evidence or marginal likelihood. A narraive version o his accoun can

be old rom he poin o view o he genoype (rom he boom up) or he phenoype

(rom he op down):

From the perspective o the genotype, we can consider evoluion as belie-updaing

over generaions, where he belie in quesion corresponds o a probabiliy densiy over

exended genoypes (henceorh, genoype). This belie-based model o allelic change is

analogous o reamens o evoluion in erms o changes in allele requencies rom gener-

aion o generaion [15]. This belie updaing can be described by he probabiliy o a gen-

oype appearing in subsequen generaions, in a way ha depends lawully on he mar-

ginal likelihood o exended phenoypes (henceorh, phenoype) in he curren genera-

ion. The basic idea is that the genotype parameterises or encodes a generative model, which the

phenotype uses to iner and act on its environment. On his view, evoluion can be regarded

as esing hypoheses—in he orm o generaive models—ha his kind o phenoype can

persis in his environmen. These hypoheses are esed by exposing he phenoype o he

environmen and are rejeced i he phenoype ‘srays rom he pah’ o a persisen phe-

noype. In his way, he evoluionary process selecs models or hypoheses abou persis-

en phenoypes or which i has he greaes evidence. In shor, naural selecion is jus

Bayesian model selecion [25,26,31,32].

From the perspective o a phenotype, each conspecic is equipped wih a generaive

model and iniial condiions ha underwrie is epigeneic, developmenal and ehologi-

cal rajecories. The saes o he phenoype race ou a pah hrough sae-space over is

lieime. These phenoypic saes encode or parameerise belies abou environmenal

saes—and he way he phenoype acs. This parameerizaion leads o acive inerence

and learning, in which he phenoype ries o make sense o is world and—hrough a

process o belie updaing—o realise he kind o creaure i hinks i is. (We use he erm

‘hinks’ in a liberal sense here and do nomean o imply ha all living eniies have explici

exisenial houghs.) More precisely, whawe mean is ha hese eniies behave as i hey

hold a se o belies abou he sor o eniy hey are (e.g., he mea-Bayesian sance as

considered in [33]). In virue o is geneic endowmen, i hinks i is a persisen pheno-

ype. I endowed wih a good generaive model o is environmen [34], iwill persis and

supply evidence o is ‘’ o he environmen (i.e., ‘ness’); namely, evidence (i.e., mar-

ginal likelihood) ha has been accumulaed by he slow evoluionary process.

Wha ollows is a ormal version o his narraive ha calls upon some sandard re-

suls rom saisical physics. The resuling synhesis is boh dense and delicae, because

i ries o accoun or coupling beween a phenoype and is econiche—and he coupling
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beween phenoypic and phylogeneic processes—using he same principles. Specically,

we describe a variaional synhesis ha calls on he pah inegral ormulaion o sochasic

dynamics, he apparaus o he renormalisaion group, and he Poincaré recurrence heo-

rem. The ensuing synhesis considers naural selecion and acion selecion as emergen

properies o wo random dynamical processes unolding a slow (phylogeneic) and as

(phenoypic) imescales. The key aspec o his synhesis is ha boh processes have an

aracing se (a.k.a., pullback aracor) or seady-sae soluion [35]. These soluions cor-

respond o an evolutionary stable state [36] and a nonequilibrium steady-state density [37] over

phylogeneic and phenoypic saes, respecively. By describing hese seady saes in

erms o a phylogeneically encoded generaive model—namely, a join densiy over he

pahs o he phenoype and is environmen—one can recover an onological descripion

o how he wo processes inorm, and are inormed by, each oher.

Some o he analysis presened in his paper ollows ha in [21–23], which also ap-

peals o he noion o a renormalisaion group. These reamens are based upon he emer-

gence o separable imescales and he inerpreaion o he dynamics a each scale in anal-

ogy wih inerence and learning processes. The key dierences are as ollows. The renor-

malisaion in [21] depends upon a reducion in he number o degrees o reedom wih

learning, whereas our ormulaion depends upon a pariioning operaion as par o he

renormalisaion. The dierence in imescales beween variables in [21] emerges rom he

srucure o he neural nework used, whereas i is a direc consequence o he reducion

operaor implici in our choice o renormalisaion. Finally, we exend our analysis o sen-

ien phenoypes, whose dynamics can be inerpreed explicily in erms o Bayesian be-

lie-updaing. We conclude wih a numerical sudy, illusraing he basic ideas wih syn-

apic selecion in he brain.

2. A Variational Formulation

We assume ha evoluion can be described wih wo random dynamical sysems,

describing phylogeneic (evoluionary) and phenoypic (paricular) processes, respec-

ively. The idea is o couple hese sysems using he apparaus o he renormalisaion

group [38–40] o map rom as phenoypic dynamics o slow phylogeneic dynamics in

evoluionary ime.

This mapping ress upon a dimension reducion and coarse graining or grouping

operaor (RG or Renormalisaion Group) ha maps he pah o a phenoype  o rele-

van variables a he evoluionary scale  =R . On his view, boom-up causaion is

simply he applicaion o a reducion operaor, R , o selec variables ha change very

slowly. Top-down causaion enails a specicaion o as phenoypic rajecories in erms

o slow genoypic variaions, which are grouped ino populaions, G , according o he

inuences hey exer on each oher. The implici separaion ino as and slow variables

can be read as an adiabaic approximaion [41] or—in he sense o synergeics—ino as

(dynamically sable) and slow (dynamically unsable) modes, respecively [42]. This sep-

araion can also be seen in erms o vecorial geomeric ormulaions [43]. Please see [21],

who deal careully wih he separaion o ime scales by analogy wih emporal dilaion

in physics. Inuiively, his analogy ress upon he idea ha ime can be rescaled, depend-

ing upon wheher we ake he perspecive o hings hamove quickly or slowly.

The nal move is o express he dynamics—a as and slow levels—in erms o unc-

ionals ha have he same orm. These uncionals are uncions o probabiliy densiies

ha can be read as Bayesian belies. Expressing he dynamics in his way allows one o

inerpre phenoypic dynamics as acive inerence and learning, under a generaive model

ha depends on he exended genoype. In oher words, one can inerpre he phyloge-

neic sae as inerring saes o he environmen over evoluionary ime. Crucially, he

exended genoype accumulaes evidence or is phenoype, hereby evincing a orm o

Bayesian model selecion or srucure learning [25,44–48]. For an analogous hermody-

namic reamen, please see [22], who rene and exend he ree energy ormulaion o
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[49]. In he conex o learning dynamics, a hermodynamic ree energy was derived in

[50]—using he maximum enropy principle [51,52]—and laer applied o sudy phenom-

enological models o evoluion [22]. Please see [50,53,54] or urher discussion in erms o

neural neworks and inormaion heory.

2.1. Particular Partitions

There are many moving pars in his ormulaion because i ries o accoun or he

behaviour o ‘hings’ [55] and how his behaviour underwries he emergence o ‘kinds’

(e.g., individuals and populaions) a nesed (i.e., developmenal and evoluionary) ime-

scales.

We will use [ ( )]x t x o denoe he hisory or pah o a ime-varying sae. These

pahs are deermined by sae-dependen ow ( )xf x , wih parameers x x ha in-

clude iniial saes 0(0)x x x=  . These parameers denoe a (naural) kind.

Everyhing ha ollows ress upon a particular partition o saes. A paricular pari-

ion is considered necessary o alk abou ‘hings’, such as a ‘phenoype’ or ‘populaion’.

In brie, a paricular pariion enables he (inernal) saes o some ‘hing’ o be separaed

rom he (exernal) saes o every ‘hing’ else by (sensory and acive) blanke saes [56–

60]. In he absence o his pariion, here would be no way o disinguishing a phenoype

rom is exernal milieu—or a populaion rom he environmen. In his seup, exernal

saes can only inuence hemselves and sensory saes, while inernal saes can only in-

uence hemselves and acive saes. See Figure 1 or an inuence diagram represening

he coupling among inernal, exernal, and blanke saes:

States: ( , , , )x s a = . Saes comprise he external, sensory, active and internal

saes o a phenoype. Sensory and acive saes consiue blanket saes

( , )b s a= , while phenotypic saes comprise inernal and blanke saes,

( , ) ( , )b s  = = . The autonomous saes o a phenoype ( , )a = are no

inuenced by exernal saes:

i. External states respond o sensory and acive saes. These are he saes o a pheno-

ype’s exernal milieu: e.g., econiche, body, or exracellular space, depending upon

he scale o analysis.

ii. Sensory states respond o ucuaions in exernal and acive saes: e.g., chemo-re-

cepion, propriocepion, inercepion.

iii. Active states respond o sensory and inernal saes and mediae acion on he envi-

ronmen, eiher direcly or vicariously hrough sensory saes: e.g., acin lamens,

moor acion, auonomic reexes.

iv. Internal states respond o sensory and acive saes: e.g., ranscripion, inracellular

concenraions, synapic aciviy.
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Figure 1. Schemaic (i.e., inuence diagram) illusraing he sparse coupling among saes ha con-

siue a paricular pariion a wo scales.

The evoluion o hese sparsely coupled saes can be expressed as a Langevin or so-

chasic dierenial equaion: namely, a high dimensional, nonlinear, sae-dependen ow

plus independen random (Wiener) ucuaions,  , wih a variance o 2Γ:
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The ow per se can be expressed using he Helmholt–Hodge decomposiion [61] as ol-
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Noe ha our appeal o an equaion o his orm means we have implicily sipulaed ha

here is a seady-sae densiy or poenial uncion ha remains consan (or a leas

changes very slowly) over he imescale we are ineresed in. Equaion (2) expresses he

ow as a mixure o a dissipaive, gradien ow and a conservaive, solenoidal ow [62–

64]. The gradien ow  depends upon he ampliude o random ucuaions, while
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he solenoidal ow Q circulaes on he isoconours o he poenial uncion called

sel-inormation, ( ) ln ( )x p x = − , where ( )p x is called he nonequilibrium steady-state

density or NESS densiy [37,65–67].

The paricular pariion above ress on sparse coupling beween dynamic variables,

c.., [68,69], and evinces he noion o an ‘acion-percepion cycle’ beween exernal and

inernal saes [70]. The erms ‘exernal’ and ‘inernal’ oer useul inuiions, bu i is worh

being cauious abou overinerpreing hese labels in spaial erms. For insance, i migh

seem ha some ‘exernal’ variables such as ambien emperaure migh direcly inuence

‘inernal’ variables such as he emperaure wihin a cell. However, his inuiion would

no be an appropriae way o hinking abou his sysem’s pariion. Eiher we would have

o assume ha here is an inervening variable (e.g., he emperaure wihin he cell mem-

brane) or we would have o rea he inernal emperaure as a sensory variable, which

isel inuences inernal variables such as he raes o enzymaic reacions. There is now

an emerging lieraure asking abou he appropriae ways o hink o paricular pariions

in biology, including wha is inernal o a neuronal nework [71], or a spinal reex arc [72].

2.2. Ensemble Dynamics and Paths o Least Action

To describe dynamics a he phenoypic or phylogeneic scale, we rs need o re-

hearse some sandard resuls rom saisical physics ha urnish a probabilisic descrip-

ion o rajecories or pahs a any scale. This descripion calls on he sel-inormaion o

saes ( )x t , generalised saes ( , , )x x x= , and pahs, [ ( )]x x t= , where

( , , )x x x =D denoes generalised noion, and 2Γ is he covariance o generalised

random ucuaions:

1 1
0 2 2

0

( ) | [ln | | ( ( )) ( ( )) ]

( ) ln (

( ) ln ( )

ln ( )

| ) ( )

x x x x f x x f x f

x p x x d

x

p

t x

p x

== + −  − +

= − =

= −

−


Γ

Γ D D (3)

The rsmeasure, ( )x , is he sel-inormaion or surprisal o a sae, namely, he implau-

sibiliy o a sae being occupied. When he sae is an allele requency and evolves accord-

ing o Wrigh–Fisher dynamics, his is someimes reerred o as an ‘adapive landscape’

[73]. The second, ( )x , is he Lagrangian, which is he surprisal o a generalised sae,

namely, he insananeous pah associaed wih he moion rom an iniial sae. In gener-

alised coordinaes o moion, he sae, velociy, acceleraion, ec., are reaed as separae

(generalised) saes ha are coupled hrough he ow [74,75]. Finally, he surprisal o a

pah ( )x is called action, namely, he pah inegral o he Lagrangian.

Generalised saes aord a convenien way o expressing he pah o leas acion in

erms o he Lagrangian

( ) ( ) 0 ( ) ( ) ( )x x xx x x x x x x x x + − =  − = −  = −D D D (4)

The rs equaliy resembles a Lagrange equaion o he rs kind ha ensures he

generalised moion o saes is he sae o generalised moion. Alernaively, i can be read

as a gradien descen on he Lagrangian, in a moving rame o reerence (second equaliy).

When he Lagrangian is convex, soluions o his generalised gradien descen on he La-

grangian (hird equaliy) necessarily converge o he pah o leas acion. Denoing pahs

o leas acion wih boldace:
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( )

( ) 0 argmin ( )

( ) 0 argmin ( )

x x

x x

f

x

x

= =

 =  =

 =  =

x Dx x

x x

x x

(5)

Convergence is guaraneed by he quadraic orm (i.e., convexiy) o he Lagrangian,

which inheris rom Gaussian assumpions abou random ucuaions. This gradien de-

scen is someimes described as convergence o he pah o leas acion, in a rame o re-

erence hamoves wih he sae o generalised moion [76].

We can also express he condiional independencies implied by a paricular pariion

using he Lagrangian o generalised saes. Because here are no ows ha depend on boh

inernal and exernal saes, exernal and inernal pahs are independen, when condi-

ioned on blanke pahs:

2 2

00 0 ( , | , ) ( | , ) ( | , ) ( ) | , ,
f

s a s a s a s a x     
   
 

=  =  = +  ⊥
    (6)

In oher words, blanke pahs urnish a Markov blanke over inernal pahs. We will

use his resul laer o disambiguae he role o acive and sensory dynamics in senien

behaviour—i.e., acive inerence—o a phenoype. Firs, we have o esablish a ormalism

or ensembles or populaions o phenoypes. Here, we draw on he apparaus o he renor-

malisaion group.

2.3. Diferent Kinds o Things

To deal wih muliple ‘hings’ (e.g., paricles, phenoypes and populaions), we rs

inroduce a grouping operaor G ha pariions he saes a he i-h scale o analysis ino

N paricles on he basis o he sparse coupling implied by a paricular pariion. In oher

words, we group saes ino an ensemble o paricles, where each paricle has is own in-

ernal and blanke saes. Wih a sligh abuse o he se builder noaion:

( )( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1{ , , } { , , , , , , , , , , , }

ii i
nn n

i
n

i i i i i i i i i

N j k m o p

as

x x x x x x x





  =G

(7)

The grouping operaor means he exernal saes o a given paricle are he (blanke)

saes o remaining paricles ha inuence i. See [55] or a worked example and numerical

analysis. This grouping expresses he dynamics o each paricle in erms o is sensory

saes—ha depend upon he blanke saes o oher paricles—and auonomous saes—

ha only depend upon he saes o he paricle in quesion:

1

( , , )

( ,

0 ( )

0 ( | )

)

, ,
n n n n

n n n

n

n

n

s s

s n Nn

s s

n

n n

n n n

N

n

f b bs

f b

b bf

sf

Q

Q 





 
 



−       
=     

−       

  
= = +  

   





   

(8)

A his poin, we pause o consider ha he saes in he paricular ensemble have o

be he saes o some ‘hing’: namely, he saes o a paricle a a lower scale. This means

ha saes mus be he saes o paricles (e.g., phenoypic saes) ha consiue he par-

icular saes a he nex scale (e.g., phylogeneic saes). This recursive ruism can be
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expressed in erms o groupingG operaor—ha creaes paricles—and a reducion R op-

eraor—ha picks ou cerain paricular saes or he nex scale:

( ) ( ) ( 1) ( 1){ } { } { } { }i i i i

n n mx x + +⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→R G R G R
(9)

The composiion o he wo operaors can be read as mapping rom he saes o par-

icles a one scale o he nex or, equivalenly, rom paricular saes a one scale o he

nex—in shor, creaing paricles o paricles, namely, populaions. See Figure 2.

( 1)( 1)

( 1)

( ) ( 1)

( ) ( 1)

( 1) ( 1) ( ) ( ) ( ) ( ) ( )

1 1

{ } { }
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ii
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i
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i i

n m

i i i i i i i

M j k m
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x x





 

        
++

+

+

+

+ +

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

=

R G R G R G

G R G R G R

G R R R R R

( ) ( )

( 1) ( )

, }

{ } { }

i i

n n

i i

m n

 

 +

=

=

R

G

(10)

Figure 2. Schemaic showing he hierarchical relaionship beween paricles a scales i and i + 1. For

clariy, sensory and auonomous saes are illusraed in blue and pink, respecively. Noe ha each

variable is a (very large) vecor sae ha isel is pariioned ino muliple vecor saes. A scale i +

1, each paricle represens an ensemble (e.g., ( 1)i

m
+ is populaion m), he elemens owhich are par-

iioned ino auonomous and sensory subses (e.g.,
( 1)

n

i

m
+

is he n-h auonomous genoype rom

populaion m). A scale i, each paricle represens an elemen o an ensemble (e.g., ( )i is he -h
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phenoype), which is isel pariioned ino sensory and auonomous subses. The slow saes o each

elemen (e.g., phenoype) are recovered by he reducion operaor R, o urnish he saes a he

ensemble level (e.g., genoype). A key eaure o his consrucion is ha i applies recursively over

scales.

The reducion operaor R ypically selecs relevan variables whose slow ucuaions

conexualise dynamics a he scale below. Here, R simply recovers he saes o a paricle

ha are ime invarian or ha vary slowly wih ime (i.e., he iniial saes and ow param-

eers). This separaion o imescales means ha he lieime o a paricle (e.g., phenoype)

unolds during an insan rom he perspecive o he nex scale (e.g., evoluion). The sep-

araion o imescales could have been achieved wihou he grouping (pariioning) oper-

aor. We could simply have projeced ono he eigenvecors o a dynamical sysem’s Jaco-

bian, eecively aking linear (or nonlinear) mixures o our sysem o arrive a as and

slow coordinaes. However, all we would be le wih are as and slow coninuous varia-

bles ha have nohing o he characer o he individuals, phenoypes, or populaions in a

sysem. In shor, he grouping operaor is key in ideniying as and slow ‘hings’—as

opposed o jus as and slow coordinaes o a dynamical sysem.

In shor, he renormalisaion group operaor creaes paricles o paricles, reaining

only paricular variables ha change very slowly and hen grouping hem according o

heir sparse coupling. This means ha paricles increase in heir size rom one scale o he

nex—in virue o he grouping o paricles a he lower scale—and change more slowly—

in virue o he coarse graining aorded by emporal reducion.

In an evoluionary seing, he exisence o seady-sae soluions—implici in he

Langevin ormalism above—means ha phenoypic dynamics possess a pullback arac-

or. Thismeans heir pahs will reurn o he neighbourhood o previously occupied saes.

In oher words, heir ‘liecycle’ will inersec wih some Poincaré secion in phenoypic

sae-space (possibly many imes). We will ake his inersecion o be a mahemaical im-

age o persisence, which is underwrien by he ow parameers a any poin in evolu-

ionary ime.

A he phylogeneic scale, we have a pariion ino populaions o phenoypes based

upon which phenoypes inuence each oher. A his slow scale, saes can be read as char-

acerising he ‘kind’ o ‘hing’ ha has paricular saes a he scale below. We will, here-

ore, reer o saes a his level as (naural) kinds, noing ha he ‘kind o hing’ in quesion

does no change a he as scale. We can now rehearse he paricular pariion a he phy-

logeneic scale, noing ha or a populaion o exis, i mus have a paricular pariion.

Here, a populaion corresponds o a se o paricular kinds
( 1) ( , , , )ix s a +

= . These in-

clude external, sensory, active, and internal kinds.

i. External kinds o paricles are phenoypes ouside he populaion ha change as a

uncion o hemselves and sensory and acive kinds: c.., he arge o niche construc-

tion, rom a molecular hrough o a culural level, depending upon he scale o anal-

ysis [77,78].

ii. Sensory kinds mediae he eecs o exernal kinds on he inernal members o he

populaion in quesion: e.g., nuriens or prey.

iii. Active kindsmediae he eecs o inernal kinds on exernal kinds: e.g., agens who

mediae niche consrucion, rom a molecular hrough o a culural level, depending

upon he scale o analysis.

iv. Internal kinds inuence hemselves and respond o changes in sensory and acive

kinds.

This concludes our ormal seup. Nex, we consider he coupling beween as phe-

noypic and slow phylogeneic dynamics. As in oher applicaions o he ree energy prin-

ciple, his coupling emerges as a propery o any phylogeneics ha possesses an evolu-

ionary seady sae. In oher words, he idea here is o ideniy he properies o a sysem
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ha exiss, as opposed o ideniying he properies ha underwrie exisence. We will see

ha he emergen properies look very much like naural selecion.

2.4. Natural Selection: A Variational Formulation

To specialise paricular pariions o naural selecion, we will associae auonomous

(acive and inernal) kinds wih he (exended) genoypes ha consiue a populaion o

agents, noing ha here is no requiremen or agens o belong o he same equivalence

class—hey jus inerac, in virue o he sparse coupling ha denes heir grouping ino

a populaion. For example, some agens could be animals, and ohers could be plans.

A he phylogeneic scale, an agen is an auonomous kind rom a paricular popula-

ion. A he phenoypic scale, he agen has paricular (phenoypic) saes, whose dynam-

ics or pahs depend upon is (genoypic) kind. For ease o noaion, we will deal wih a

single populaion where he phenoypic sae o he n-h agen,
( 1)i

n
+

, will be denoed by

( )i (i.e., dropping he m in Figure 2). Wih his ormalism in place, we can ormulae he

coupling beween phenoypic and phylogeneic dynamics wih he ollowing lemma:

Lemma 1. (Variational tness): I, at non-equilibrium evolutionary steady state, the likelihood o

an agent’s genotype
( 1) ( )i i

n +
= R is proportional to the likelihood o its phenotypic trajectory

( )i (where\denotes exclusion),

( 1) ( 1) ( 1) ( 1)

( ) ( ) ( 1) ( ))|

)\(

(

|i i i i

n n n

i i i ix

  

 

+ + + +

+





= 

= =

(11)

hen he ollowing holds:

An agen’s auonomous dynamics can be cas as a gradien descen on a Lagrangian,

whose pah inegral (i.e., acion) corresponds o negaive ness. This Lagrangian depends

upon he ow parameers (and iniial saes) supplied by he genoype. The agen’s geno-

ype can hen be cas as a sochasic gradien descen on negaive ness. This ormulaion

emphasises he relaionship beween gradiens on ness (selecion) and he sochasic

erms ha are uncorrelaed wih selecion (dri):

( ) ( 1)

Fast (c.f., phenotypic) dynamics Slow (c.f., phylogenetic) dyn

1

ami

( ) ( ) ( ) ( 1) ( 1) ( ) ( ) ( 1)

s

( ) ( ) ( (

c

)

)

( |

(i i
n n n

i i i i i i i i

n n

i i i ix

Q  
   

 

+

+ + + +

+

= − = +



− 

=

D

1) ( ) ( )

Lagrangian (c.f., surprisal) Action (c.f., adaptive fitness)

) ( )i idt = 
(12)

Formally, he generalised gradien descen a he phenoypic scale corresponds o

Bayesian lering or inerence [76] ha maximises he marginal likelihood o phenoypic

pahs. This is almos auological, in ha i says ha deviaions rom he mos likely de-

velopmenal rajecory, given some genoype, are unlikely. An addiional subley here is

ha he Lagrangian, which plays he role o a Lyapunov uncion, is a uncion o sensory

saes. The implicaion is ha he gradiens are no saic, bu hemselves change based

upon he way in which he environmen ineracs wih a creaure during is developmen.

The sochasic gradien descen a he phylogeneic scale corresponds o Bayesian learning

via sochasic gradien Langevin dynamics [79], equipped wih solenoidal mixing [80].

On his Bayesian reading, phenoypic dynamics iner heir exernal dynamics, under

a probabilisic model o how exernal dynamics generae phenoypic dynamics. Inergen-

eraional geneic changes can be seen as learning he parameers o a generaive model,

given he Bayesian model evidence supplied by he scale below (e.g., exended pheno-

ype). This reading ress upon he acion (i.e., negaive ness) scoring he accumulaed

evidence ( | )p x or a phenoype’s generaive model, ( , | )p x  encoded by he
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exended genoype x . This evidence is also known as a marginal likelihood because imar-

ginalises over exernal dynamics; i.e., oher agens.

Proo. The condiion in (11) means ha he probabiliy o nding an agen o a paricular

kind is proporional o he likelihood o is phenoypic pah, namely, he likelihood a phe-

noype keeps o he ‘rodden pah’, characerisic o he ‘kind’ o ‘hings’ ha persis. The

exisence o a nonequilibrium evoluionary seady-sae soluion o he densiy dynamics

(a boh scales) allows us o express he as and slow dynamics o agens and heir auon-

omous saes in erms o Helmholt–Hodge decomposiions. From (1) and (2), we have

( ) ( 1)

( ) ( ) ( ) ( ) ( ) ( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1)( ) ( ) ( ) ( 1)

( (

( )

) )

( )|

i i

i i i i i i i i i i

i ii i i i

Q Q

x

    
   

 

+

+ + + + +

+ ++

−   −



=  

=

+ = +

=   
(13)

The gradiens o surprisal a he slow scale, wih respec o any given agen’s ‘kind’ or

genoype, are he gradiens o acion by (11):

( 1) ( 1) ( 1)

( 1) ( 1) ( )
i i i
n n n

i i i

n  + + +

+ +    == (14)

Subsiuing (14) ino (13) gives he slow, phylogeneic dynamics in (12) (ignoring cerain

solenoidal erms). □

For he as, phenoypic dynamics, we assume ha random ucuaions vanish o

describe phenoypes ha possess classical (i.e., Lagrangian) mechanics, i.e., ha are dom-

inaed by conservaive or solenoidal dynamics. In he limi o small ucuaions, he au-

onomous pahs become he pahs o leas acion, i.e., when he ucuaions ake heir

mos likely value o zero. From (4), he auonomous pahs o leas acion are as ollows

(seing 1 = ):

( )

( ) ( ) ( ) ( )( | )i

i i i ix


  = −D (15)

Subsiuing (15) ino (13) gives he as dynamics in (12).

Remark 1. Note that the extended genotype
( ) ( ) ( ) ( 1){ , }i i i ix    +
=  includes the initial

states o the extended phenotype. In other words, the extended genotype covers both the genetic and

epigenetic specication o developmental trajectories and the initial conditions necessary to realise

those trajectories, including external states (e.g., conditions necessary or embryogenesis),
( ) ( )(0) i i  .

A useul inuiion as o he biological role o he Lagrangian in Equaion (11) is ha

i species he saes (or rajecories) o a sysem ha has achieved homeosasis. The unc-

ion will reurn a small value when physiological measuremens are wihin homeosaic

ranges, and increasingly large values as deviaions rom hese ranges become larger. The

condiioning upon slow (genoypic) variables means ha dieren sors o homeosaic

ranges are allowable or dieren sors o phenoypes. The relaionship beween he (as)

acion and (slow) Lagrangian in Equaion (11) implies ha phenoypic rajecories—in

which homeosasis is mainained—are associaed wih genoypes ha are more likely o

be replicaed. More precisely, he Lagrangian avours (i.e., is pah inegral is smaller or)

hose rajecories in which opporuniies or replicaion are aained—and successul

mainenance o homeosasis is only one aspec o his.

The suppression o random phenoypic ucuaions does no preclude iineran ra-

jecories. Indeed, i oregrounds he loss o deailed balance and accompanying nonequi-

libria ha characerise phenoypic and populaion dynamics [81–83]: or example, bio-

rhyhms and chaoic oscillaions a he phenoypic scale [84–88] or Red Queen dynamics
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a he phylogeneic scale [83,89,90]. A sysem ha has he propery o deailed balance is

one in which ime reversal makes no qualiaive dierence o he dynamics o ha sysem.

The implicaion is ha sysems in which he solenoidal ow is zero possess deailed bal-

ance, while hose wih a non-zero solenoidal ow do no. The presence o solenoidal ow

means ha ime reversal also leads o a reversal in he direcion o his ow. Please see

[31] as a relaively recen example o he Helmholt–Hodge decomposiion in Darwinian

processes and [80] or a generic reamen o sochasic chaos in his seing. Furhermore,

here is no requiremen or he grouping operaor o reurn he same pariion a each

insan o is applicaion. This ollows because he grouping operaor is deermined by

sparse coupling among paricles a he scale below, which isel may change as cerain

paricles become ‘shielded’ rom ohers [91]: or example, during he sel-assembly o par-

icular pariions associaed wih cell-division, mulicellular organisaion and develop-

men [57]. Mahemaically, his permis wandering ses (i.e., pariions) a each scale,

where ness gradiens remain well-dened, because hey inheri rom he dynamics o

he scale below.

Implici in he renormalisaion group consrucion is he noion ha variaional se-

lecion could operae amuliple scales. In oher words, alhough ramed in erms o na-

ural selecion and evoluion, he variaional ormulaion above does no commi o sepa-

raion o emporal scales ap or replicaion or reproducion. Any selecive mechanism

ha ulls he ness lemma (Lemma 1) will, in principle, be subjec o he same selecive

mechanics. Common examples could include he opimisaion o weighs in neural ne-

works and heir srucure learning [45,76,92]. In a biological seing, his selecion process

could correspond o developmenal sages ha havewell-dened (separaion o) emporal

scales. Finally, we ake a closer look a phenoypic dynamics and explain why hey can be

consrued as senien behaviour.

3. The Sentient Phenotype

An onological inerpreaion o phenoypic dynamics—in erms o senien behav-

iour or acive inerence—obains by expressing he Lagrangian as a variational ree energy.

For clariy, we will drop he sub- and superscrips (and condiion on he exended geno-

ype x ) o ocus on he generalised saes o a given phenoype.

Lemma 2. (Variational ree energy): I the autonomous dynamics o a particle or phenotype evince

classical (Lagrangian) mechanics, then they can be expressed as minimising a variational ree en-

ergy unctional o Bayesian belies—about external states—encoded by their internal phenotypic

states, ( )p  , under a generative model encoded by their (extended) genotype
0( , | )xp x  :

Energy constraint Entropy

0

Complexity —Accuracy

( , )

( , ) [ ( , , )] [ ( )]

[ ( ) | ( | )] [ ( , | )]

[ ( ) || ( | ,

p x p

KL x p x

KL x

F s

F s s

D p p x s

D p p s

 











  

   

   

 

= −

= −

= +

=

D

0

— Log evidenceDivergence

0

, )] ( , )

)|ln( ) (

x

x x

a x

x xp

s

x



−

+

(16)

This variaional ree energy can be rearranged in several ways. Firs, i can be ex-

pressed as an energy consrain minus he enropy o he variaional densiy, which
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licences he name ree energy [93]. In his decomposiion, minimising variaional ree en-

ergy corresponds o he maximum enropy principle, under he consrain ha he ex-

peced Lagrangian is minimised [51,94]. The energy consrain is a uncional o he mar-

ginal densiy over exernal and sensory saes ha plays he role o a generaive model

(i.e., parameerised by he exended genoype), namely, a join densiy over causes (exer-

nal dynamics) and heir consequences (auonomous dynamics). Second—on a saisical

reading—variaional ree energy can be decomposed ino he (negaive) log likelihood o

paricular pahs (i.e., accuracy) and he KL divergence beween poserior and prior densi-

ies over exernal pahs (i.e., complexity). Finally, i can be wrien as he negaive log evi-

dence plus he KL divergence beween he variaional and condiional (i.e., poserior) den-

siy. In variaional Bayesian inerence [95], negaive ree energy is called an evidence lower

bound or ELBO [96–98].

Proo. The sparse coupling—ha underwries a paricular pariion—means auonomous

pahs (i.e., generalised saes) depend only on sensory pahs. This means here is a (deer-

minisic and injecive) map rom he mos likely auonomous pahs (o sufcienly high

order generalised moion) o he condiional densiy over exernal pahs, where boh are

condiioned on sensory pahs. This injecion means we can consider he condiional den-

siy over exernal pahs as being parameerised by inernal pahs. We will call his a varia-

tional density (noing rom (6) ha inernal pahs are condiionally independen o exernal

pahs):

0 0( ) ( | , , ) ( | , , , )

argmin ( | )

argmin ( | , )

argmin ( | , )

x x

x

x

a x

p p s x p s x

s

s

a s





   





=

= 

=

=

μ
a a

α

μ a

a μ

(17)

This deniionmeans ha he Lagrangian and variaional ree energy share he samemin-

ima, where heir gradiens vanish:

0Divergence 0

argmin ( | ) argmin ( , )

( , ) 0

( , ) [ ( ) || ( | , )] ( , ) 0

x

KL x x

s F s

s

F s D p p s s

 



  

 

 
==

= =

 =

 = + =



  
μ

α

α

α a α

(18)

I auonomous dynamics are conservaive, heir rajecory is a pah o leas acion and we

can replace he Lagrangian gradiens in (12) wih variaional ree energy gradiens o give

(16). □

Remark 2. The ree energy lemma (Lemma 2) associates negative tness with variational ree en-

ergy, such that phenotypic behaviour will appear to pursue paths o least ree energy or greatest

tness. Because variational ree energy is an upper bound on log evidence, the pursuit omaximum

tness can be read as sel-evidencing [99]: namely, actively soliciting evidence or generative models

endowed by evolution. In short, autonomous dynamics (appear to) actively iner external states

under a generative model, whose parameters are (apparently) learned by minimising a path integral

o variational ree energy.

The uncional orm o variaional ree energy licences a eleological inerpreaion o

auonomous dynamics; he inernal pahs can be read as he sufcien saisics or param-

eers o (approximae) Bayesian belies abou exernal saes, while acive pahs will
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(appear o) change he poserior over exernal saes o ‘’ inernal (Bayesian) belies. In

oher words, acive dynamics will look as i hey are rying o ull he predicions o

inernal represenaions. A complemenary inerpreaion inheris rom he decomposi-

ion o variaional ree energy ino complexiy and accuracy. Minimising complexiy

means ha generalised inernal saes encode Bayesian belies abou exernal saes ha

are as close as possible o prior belies, while generalised acive saes will look as i hey

are changing sensory saes o realise hose belies. These inerpreaions—in erms o per-

ception and action—urnish an elemenary bu airly expressive ormulaion o acive in-

erence. For example, he ree energy ormulaions above have been used o emulae many

kinds o senien behaviour, ranging rom morphogenesis [100], hrough acion observa-

ion [101], o birdsong [102].

Alhough no developed here, he renormalisaion group consrucion means hawe

can apply he same argumens o auonomous kinds—i.e., agens—a he slow scale. In

oher words, on average, he exended genoype o inernal kinds comes o encode Bayes-

ian belies abou exernal kinds, while acive kinds will look as i hey are rying o realise

hose belies, via niche consrucion [77,103–105]. In virue o he minimisaion o varia-

ional ree energy, we have an implicimaximum enropy principle, which brings us back

o [21,22] via [49].

4. Variational Recipes

Eecively, we are describing he evoluionary developmenal process wih he ol-

lowing proocol:

i. Firs, generae an ensemble o paricles (i.e., exended phenoypes) by sampling heir

ow parameers and iniial saes (i.e., exended genoypes) rom some iniial den-

siy.

ii. For each paricle, nd he pah o leas acion using a generalised Bayesian ler (i.e.,

acive inerence).

iii. Aer a suiable period o ime, evaluae he pah inegral o variaional ree energy

(i.e., acion) o supply a ness uncional.

iv. Updae he ow parameers and iniial saes, using a sochasic gradien descen on

he acion (i.e., Darwinian evoluion).

I his proocol were repeaed or a sufcienly long period o ime, iwould converge

o an aracing se, assuming his pullback aracor exiss [32]. In saisical mechanics,

his would be a nonequilibrium seady sae, while in heoreical biology, i would corre-

spond o an evoluionary seady sae, a a cerain imescale.

The noion o a seady sae is clearly an idealizaion, as i assumes an unchanging

environmen. The local environmens o all organisms are, however, moving arges,

largely due o he aciviies o oher organisms. Even i all o Lie is considered a single

populaion, i aces a changing local (i.e., biospheric) environmen due o is—Lie’s—own

aciviies, as well as o bolide impacs and oher abioic causes. Hence, we can expec evo-

luion o remain always ‘in process’ even or large, diverse populaions. The assumpion

o an asympoic evoluionary seady sae is, hereore, eecively an assumpion o a

local (in ime) seady sae ha has a lieime long enough or evoluionary processes o

be signican bu shor enough ha he local environmen o he evolving sysem can be

considered approximaely xed. We now conclude wih a simple applicaion o he above

proocol o a special case o selecion in neurobiology.

A Numerical Study o Synaptic Selection

Figure 3 shows he resuls o a numerical sudy o selecion processes, using he var-

iaional procedures above. This example illusraes he inerplay beweenminimising var-

iaional ree energy over somaic lieimes and is use in selecing phenoypes a a slow,

ransgeneraional, imescale. This example considers a relaively sraighorward selecion

process in neurobiology, namely, synapic selecion in neurobiology, which illusraes he
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nesed scales over which ree energy minimising processes evolve. Specically, we simu-

laed a single neuron (i.e., nerve cell) immersed in an environmen consiued by poenial

pre-synapic inpus in he surrounding neuropil. Unbeknown o he neuron (or more spe-

cically, is dendriic ree), hese presynapic inpus ucuaed sysemaically wih spa-

ially srucured waves o acivaion. These waves could only be deeced by deploying

possynapic specialisaions (i.e., sensory saes) in an ordered sequence along he den-

drie. The deails o his simulaion are no imporan, and can be ound in [106]. The key

poin here is ha he cell’s adapive ness—read as negaive variaional ree energy—

depends upon predicing is synapic inpus hrough inernal, inracellular dynamics ha

recapiulae he exernal, exracellular or environmenal generaion o sensory (synapic)

inpus. However, o do his, he dendrie has o have he righmorphology, parameerised

by he locaion o synapses on he dendriic surace.

To model learning and inerence, he synapses were rendered more or less sensiive

o heir presynapic inpus by opimising heir sensiiviy (a.k.a., precision) wih respec

o variaional ree energy in a biologically plausible ashion (i.e., using elecrochemical

equaions o moion ha perormed a gradien ow on variaional ree energy). This

mean ha as he cell accumulaed evidence rom is presynapic environmen, is ree

energy decreased, and i became beer a predicing is presynapic inpus. However, his

abiliy o predic depends upon selecing synapses ha are locaed in he righ order,

along he dendrie.

To simulae synapic selecion, we used Bayesian model selecion o compare he ev-

idence or a cell’s model wih and wihou a paricular synapic connecion. I he ree

energy increased, he possynapic specialisaion was moved o anoher locaion a ran-

dom. This process was repeaed o simulae slow (Bayesian model) synapic selecion, un-

il he phenoypic morphology o he dendrie was ap or accuraely modelling (i.e., -

ing) he waves o pre-synapic inpu. In his example, he Bayesian model selecion used

Bayesian model reducion [107], based upon he opimised sensiiviy (i.e., precision) o

each synapse: very much along he lines o synapic regression and implici homeosasis

[108–110]. Figure 3 shows he progressive reducion in ree energy a a slow imescale as

he synapses ha enable he cell o predic or  is environmen are seleced.
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Figure 3. synapic selecion. This gure repors he resuls o numerical sudies using as ree-en-

ergy minimising processes o model phenoypic dynamics and slow ree-energy minimising pro-

cesses o selec phenoypic conguraions or morphologies ha, implicily, have he greaes adap-

ive ness or adap o  heir environmen. In his example, we ocus on he selecion o synapses

o a brain cell (i.e., neuron) ha samples presynapic inpus rom is neuropil (i.e., environmen).

The deails o he generaive model—used o simulae inracellular dynamics as a gradien ow on

variaional ree energy—can be ound in [107]. The key hing abou hese simulaions is ha—aer

a period o ime—cerain synapses were eliminaed i Bayesian model selecion suggesed ha heir

removal increased Bayesian model evidence (i.e., decreased variaional ree energy). (A): Findings

in [111] sugges ha neurons are sensiive o he paern o synapic inpu paerns. The image shows

a pyramidal cell (blue) sampling poenial presynapic inpus rom oher cells (yellow)wih possyn-

apic specialisaions (red). (B): In his model, pools o presynapic neurons re a specic imes,

hereby esablishing a hidden sequence o inpus. The dendriic branch o he possynapic neuron

comprises a series o segmens, where each segmen conains a number o synapses (here: ve seg-

mens wih our synapses each). Each o he 20 synapses connecs o an axon o a specic presynapic

pool. These provide presynapic (sensory) inpus a specic imes over he lengh o a dendrie. I

each o he 20 synapses were deployed in an orderly ashion across he ve segmens—as in he

conneciviy marix—an orderly sequence o possynapic acivaions would be deeced, and, im-

plicily. (C): The lower panels show he deploymen o synapic connecions over 64 ‘generaions’

(i.e., cycles), in which he precision (a.k.a. sensiiviy) o synapses was used o eliminae synapses i

hey did no conribue o model evidence. Each ‘lieime’ o he cell was 120 (arbirary) ime unis,

during which ime wo waves o acivaion were deecable. The upper panels score he ensuing

increase in marginal likelihood or adapive ness (negaive ree energy) over he 64 generaions.

The le panel shows he accompanying increase in he sensiiviy (i.e., log-precision) o he 20 syn-

apses as hey nd he collecive arrangemen hamaximises adapive  or model evidence or his

(neuronal) environmen.

5. Discussion

One insigh rom he above analysis is ha populaions are no necessarily quoien

ses o equivalence classes. Pu simply, here is no assumpion ha any given paricle

shares phenoypic or genoypic characerisics wih any oher paricle. This observaion is
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ineresing on wo couns. Firs, i suggess ha reaing a populaion as an equivalence

class o conspecics may no be sufcien, in he sense ha he populaion includes all o

he (naural) kinds ha inerac o mainain heir paricular pariion. The ac ha all ‘in-

dividual’ mulicellular eukaryoes appear o be holobions—eecively, complex, muli-

species ecosysems—bears his ou [95,96]. The ‘genoype’ o such a sysem is a probabiliy

disribuion o probabiliy disribuions, each o he laer over one o he componen ‘spe-

cies’ composing he holobion. The phenoype o he holobion, including is reproducive

success and hence ‘ness’ in he narrow reading, is a uncion o his bilevel probabiliy

disribuion. Dierenial raes o geneic change beween componen genomes—and he

ac ha acions a he phenoypic level can aler he genoype as a probabiliy disribuion

(e.g., humans can ake ani- or probioics)—complicae he dierence in characerisic

imes assumed in Lemma 1, as discussed urher below. Second, even i some agens share

he same genoype, heir phenoypes can specialise in disincways ominimise heir join

variaional ree energies. This is obvious in he case o mulicellular eukaryoes, all o

which exhibi diereniaion o cellular phenoypes during morphogenesis; see [89] or a

worked example specically employing he FEP ormalism, and [97] or simulaions

demonsraing hamulicellulariy wih diereniaion provides a generic means omin-

imising VFE rom he environmen. These consideraions ogeher mandae a quinessen-

ially co-evoluionary perspecive ha emphasises co-dependencies and co-creaion

[16,98–100].

However, he emergence o equivalence classes—e.g., ‘species’ o holobions—begs

explanaion. A poenial answer is he generalised synchrony beween paricles, as hey

nd heir join variaional ree energy minima—and become muually predicable; e.g.,

[52,91]. In an evoluionary seing, one can imagine he search or join variaional ree

energy minima leading o convergen evoluion or speciaion (Luc Ciompi, personal com-

municaion; [101]). Reproducion is, in all exan organisms, a maer o cell division, and

closely relaed cells reap a ree-energy advanage by working ogeher [97]. An eecive—

hough meabolically, morphologically, and behaviourally expensive—mechanism o

proec his advanage is sex. The prolieraion o species-specic morphological and be-

havioural specializaions, ogeher wih he suppression o sem-cell pluripoency re-

quired o render sex obligae [102] in ‘higher’ eukaryoes, aess o he success o his

sraegy. From he presen perspecive, sex is a paricularly elaborae eedback pahway—

rom he phenoypic o he genoypic scale—ha preserves he inegriy o he laer. I is,

in oher words, a mechanism ha decreases VFE or he genome a he expense o in-

creased VFE or he phenoype.

The synhesis o biological evoluion and developmen on oer here is an example o

a generalised synhesis: applicable, under he ree energy principle, o all kinds o hings.

This synhesis can be read as generaive models auopoieically generaing eniies and

hen using he ‘’ o he model o he niche as evidence or updaing he model, in a

cyclical process summarised in Figure 4.
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Figure 4. Phylogeny and onogeny as boom-up and op-down causaion.

6. Limitations

As wih mos applicaions o he ree energy principle, he variaional accoun alone

does no supply a process heory. Raher, i sars rom he assumpion ha a nonequilib-

rium (evoluionary) seady sae exiss and hen describes he dynamics ha he sysem

mus exhibi. Thus, he variaional accoun enables various process heories o be pro-

posed as specic hypoheses abou biological sysems. For example, he geneic variaion

in he above ormulaion ollows rom he Helmholt decomposiion or undamenal he-

orem o vecor calculus. However, he ensuing sochasic gradien Langevin dynamics

does no speciy he paricular processes ha give rise o his kind o dynamics, e.g., [103].

There are many candidaes one could consider: or example, simple rejecion sampling or

more involved geneic algorihms ha provide a plausible accoun o bisexual reproduc-

ion [104,105]. A compuaionally expedien way o evaluaing he requisie gradiens—

or example hose or simulaing aricial evoluion—could call upon Bayesian model re-

ducion [45,112]. Irrespecive o he replicaion or reproducion process, i mus, on he

presen analysis, conorm o a sochasic gradien ow on ‘ness’ wih solenoidal mixing

[72,78,79].

This openness o muliple process heories is an advanage o he curren approach,

boh in convergence siuaions in which diverse genomes produce very similar pheno-

ypes [112] and in he complemenary siuaions in which a single genome suppors di-

verse phenoypes. Neiher siuaion is rare: genomes as dieren as hose o Amoeba pro-

teus and Homo sapiens can produce amoeboid cells, and he diereniaed cells o any mul-

icellular organism illusrae phenoypic diversiy a he cellular level. While he general

heory oulined here merely requires ha some process exiss, we can realisically expec

one-o-many process mapping in boh direcions when dealing wih real biological sys-

ems.

The primary oering o his variaional ormulaion o naural selecion—rom an

empirical perspecive—is ha one can hypohesise alernaive orms or he Lagrangian.

Each choice o Lagrangian will have consequences no only or he dynamics over physi-

ological and developmenal imescales bu will also allow or predicions as o evoluion

over phylogeneic imescales. I is also worh noing ha he accoun o naural selecion

se ou here, in which genoypic evoluion depends upon he acion o phenoypic pahs,

applies o sysems ha saisy he variaional ness lemma (Lemma 1): namely, he like-

lihood o an agen’s genoype corresponds o he likelihood o is phenoypic rajecory.

While a plausible assumpion—ha is inuiively consisen wih Darwinian evoluion—

we did no examine he condiions under which his assumpion holds. This means here

is an opporuniy o urher he ideas se ou in his paper by examining he sors o
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sochasic sysems in which he variaional ness lemma (Lemma 1) holds. I could be

argued ha Lemma 1 mus hold a leas in hose sysems where he genoype ransorms

ino he phenoype reaining an equivalence wihin sochasic limis. For example, gene

expression is he mos undamenal level a which he genoype gives rise o he pheno-

ype, and his mapping rom genoype o phenoype is he subjec o he many process

heories sudied by developmenal biology. On a eleological view, one migh urher ar-

gue ha acive inerence is necessary o mainain a high degree o equivalence during he

course o his ransormaion and o preserve a correspondence beween genoype and

phenoype.

Available edge cases are, however, inormaive. Single muaions can induce sala-

ory changes in phenoype; a canonical example is he our-wingedDrosophila melanogaster

y produced by combining hree muaions, abx, bx3, and pbx o he bihorax complex in a

single animal [113]. In complemenary ashion, he planarian Dugesia japonica reproduces

by ssion ollowed by regeneraion and has a heerogeneous, mixoploid genome wih no

known heriable muans [114]; he phenoype o his animal has, however, remained sa-

ble or many housands o generaions in laboraories, and in all likelihood or millions o

years in he wild. The phenoype can, moreover, be perurbed in salaory ashion rom

one-headed o wo-headed by an exernally imposed bioelecric change; his alered phe-

noype is bioelecrically reversible bu oherwise apparenly permanen [115]. Engineer-

ing mehods can creae even more radically diverse phenoypes wihou geneic modi-

caions, as demonsraed by he ‘xenobos’ prepared rom Xenopus laevis skin cells, which

adopmorphologies and behaviours compleely unlike hose ha skin cells manieswhen

in he rog [116,117].

The availabiliy o experimenally racable edge cases o Lemma 1 provides an op-

poruniy o urher he ideas se ou in his paper by examining he sors o sochasic

sysems in which he variaional ness lemma (Lemma 1) holds. The kinds o edge cases

menioned above sugges, however, ha Lemma 1 could be weakened o holding ‘up o’

salaory evens, including abioic evens such as bolide impacs, aecing genoype, phe-

noype, or boh wihou subsanially aecing he heory. Any sysems ha survive such

evens—any sysemswhoseMarkov blankes remain inac—simply carry on, undergoing

learning, variaion, and selecion as i he salaory even had never occurred.

One could sugges ha Lemma 1, and he broader scope o he ormalisms described

here, may be applicable o sysems where a populaion o eniies engages in inergenera-

ional replicaion (modelled here using he renormalisaion operaions), and where hose

eniies a a aser imescale engage in rapid adapaion (e.g., developmen, learning, be-

haviour, modelled wih acive inerence) during heir lieime. These wo levels could, or

example, model how genome-based inergeneraional evoluion ses iniial condiions or

organismal molecular and behavioural developmens. For he aser inra-generaional

scale, he exernal saes model he maerial basis o wha he phenoype is a generaive

model o. For he slower iner-generaional scale, he exernal saes are updaed hrough

ime as a process o renormalisaion (reducion and grouping) o he exended genoype-

phenoype.

7. Conclusions

This work aemps o uniy he slow, muli-generaional phylogeneic process o na-

ural selecion wih he single-lieime, phenoypic process o developmen (equaions and

noaion summarized in Supplemenary Maerials). In his perspecive, a bidirecional

ow o inormaion occurs as evoluion imposes op-down consrains on phenoypic pro-

cesses, and acion selecion provides evidence ha is seleced or by he environmen (i.e.,

boom-up causaion). In his accoun, learning and inerence occur hrough updaing

probabilisic belies via Bayesianmodel selecion in evoluionary ime and acive inerence

in developmenal ime. The ness o (exended) genoypes and (exended) phenoypes is

seleced or hrough he minimisaion o he same ree energy uncional: Bayesian model

evidence or marginal likelihood.
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Furher sudies using boh simulaions and laboraory experimens are clearly

needed o es his ramework in he conex o paricular process heories ha propose

explici uncional connecions beween genoype and phenoype.While Lemma 1 is prima

acie plausible in he case o idealised ‘cenral dogma’ organisms in which phenoype is

largely deermined by genoype wihin a ighly consrained, essenially saic niche, he

relaion beween genoype and phenoype in holobions inhabiing realisic niches can be

expeced o be subsanially more complex. ‘Egaliarian’ organisms, e.g., obligae symbi-

ons or holobions, comprising cells wih dieren genoypes [118] and engineered sys-

ems—ha oer cells radically dieren environmens han hey have experienced in phy-

logeneic evoluion o dae [119]—may be o paricular ineres or such sudies.
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