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Abstract
Using the formal framework of the Free Energy Principle, we show how generic thermo-
dynamic requirements on bidirectional information exchange between a system and its
environment can generate complexity. This leads to the emergence of hierarchical com-
putational architectures in systems that operate sufficiently far from thermal equilibrium.
In this setting, the environment of any system increases its ability to predict system be-
havior by “engineering” the system towards increased morphological complexity and hence
larger-scale, more macroscopic behaviors. When seen in this light, regulative development
becomes an environmentally-driven process in which “parts” are assembled to produce a
system with predictable behavior. We suggest on this basis that life is thermodynamically
favorable and that, when designing artificial living systems, human engineers are acting like
a generic “environment”.

Keywords
Free energy principle; Kinematic replication; Learning; Multicellularity; Multiscale compe-
tency architecture; Target morphology

*Corresponding author at: Allen Discovery Center at Tufts University, Medford, MA 02155 USA; E-mail
address: fieldsres@gmail.com

1



1 Introduction

Living systems are hierarchical arrangements of components that, critically, exhibit a multi-
scale competency architecture (MCA; Levin, 2022; Clawson and Levin, 2022). In an MCA,
components at each scale are competent to perform the functions appropriate to that scale
without explicit top-down instructions. Human cells, for example, do not have to be told
how to divide by the brain, or by any larger-scale system; they are competent to divide on
their own. At any scale j in an MCA, the behaviors of the components at the lower scale
j − 1 provide enabling mechanisms for j-appropriate behaviors, while the behaviors of the
components at the higher scale j + 1 impose boundary conditions. As the boundary condi-
tions effectively constrain the possibility space at scale j, state changes at scale j + 1 can
modulate or deform the possibility space at scale j, providing a source of top-down novelty.
Cell division, for example, is enabled by gene expression within the cell, and constrained
by signaling from, or transmitted via, the surrounding multicellular tissue. Top-down “in-
structions” from the surrounding, or even distal (McMillan et al., 2021), tissue can increase
or decrease the rate of cell division, e.g. during wound healing; other examples include the
modulation of cancer cell properties by the microenvironment (Bissell et al., 2002; Ingber,
2008; Bizzarri and Cucina, 2014), control of stem cell fate by large-scale axial patterning
cues during regeneration (Durant et al., 2017), and local remodeling of a structure based
on its larger anatomical context (Farinella-Ferruzza, 1956).

Such upward flows of enabling mechanisms and downward flows of constraining boundary
conditions have been identified as characteristic of living systems by Polanyi (1968), Rosen
(1986), Pezzulo and Levin (2016), and by us (Fields and Levin, 2020a) among others. In
the language of cognitive or computer science, an MCA encapsulates the competencies re-
quired for scale-appropriate behaviors. Such scale-specific encoding avoids, in particular,
“micromanagement” in the form of explicit top-down directives for each step of a complex,
lower-level competency. The automatization of processes such as first-language understand-
ing and production – and of many skills that initially require explicit rule learning (Bargh
and Ferguson, 2000) – provides a familiar example. Scale-specific encapsulation of compe-
tencies allows processes specific to each scale to function as virtual machines (Smith and
Nair, 2005), independently of the implementations of either lower- or higher-scale compo-
nents. Such implementation-independence opens up the possibility of “mix and match”
systems that combine evolved biological, engineered biological, and artificial components
in almost arbitrary ways (Levin, 2022; Clawson and Levin, 2022).

Making the idea of an MCA precise requires having a precise formulation of what counts
as a “competence.” To develop a fully-precise formulation of competence, we turn to the
variational Free Energy Principle (FEP). The FEP was first introduced as a theory of brain
function (Friston, 2005; Friston et al., 2006; Friston, 2010), was subsequently developed
into a theoretical framework for modeling living systems (Friston, 2013; Friston et al., 2017;
Ramstead et al., 2019; Kuchling et al., 2020), and more recently, extended into a framework
for modeling any physical system that remains distinguishable from its environment over
some time period of interest (Friston, 2019; Ramstead et al., 2022). These formulations
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employ the classical theory of random dynamical systems; expressed in this way, the FEP
is a classical least-action principle. In this classical setting, distinguishability between the
system of interest and its environment is assured by requiring that the two be separated
by a Markov blanket (MB; Pearl, 1988; Clark, 2017), as discussed in §2.1 below. Using
quantum information-theoretic methods, the MB condition can be further generalized to
the condition of separability, the requirement that the joint system-environment state can be
factored into independently-specifiable system and environment states. Separability is both
necessary and sufficient for an effectively classical interaction between the system and its
environment (Fields and Glazebrook, 2020; Fields and Marcianò, 2020; Fields, Glazebrook
and Marcianò, 2021). In this quantum-information formulation, minimizing VFE optimizes
the interface between two computational processes, one implemented by the system and
the other by its environment (Fields et al., 2022). In addition, as discussed in §2.2 below,
the FEP emerges as the classical limit of the Principle of Unitary, i.e. the Principle of
Conservation of Information.

In the context of the FEP, a system is “competent” if and only if it is able to maintain
its distinguishability from its environment over the time period of interest by maintaining
the functional integrity of its MB (or in quantum terms, its separability from its environ-
ment). As discussed in §2.1, a system’s competency is measured by its ability to minimize
a variational free energy (VFE) that is defined at its MB. In this case, VFE is effectively
an uncertainty about what its environment will do next. In other words, highly competent
systems are highly competent at both predicting what their environments will do next, and
responding to their environments’ behaviors in a way that preserves their predictive power.
Friston (2019) refers to such systems as both self-organizing and “self-evidencing,” i.e. as
continually generating evidence of their own continuing existence.

By providing a scale-free, effectively thermodynamic definition of competence, the FEP
enables a scale-free biology that treats evolution and development as manifestations (albeit
at different levels of organization) of a single process – VFE minimization (Fields and Levin,
2020a,b). It is natural to extend this conception of biology to encompass biologically-
relevant prebiotic, abiotic, or exobiotic processes, including those invoked in origin of life
and artificial life scenarios. To investigate the definition of “competence” provided by the
FEP in this larger context, we will focus, in particular, on two kinds of biological self-
organization:

Regulative development: Using information available from their surround-
ing environment(s), some number of cells self-organize into a multicellular or-
ganism. In both embryonic development and regeneration, such regulated self-
organization enables multicellular systems to reach “normal” target morpholo-
gies despite significant perturbations or altered starting conditions (Birnbaum
and Alvarado, 2008; Levin, 2011; Vandenberg, Adams and Levin, 2012; Lobo
et al., 2014; Pezzulo and Levin, 2016; Pinet and McLaughlin, 2019; Fields and
Levin, 2020b). Such processes are also employed by heterogeneous, facultative
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multicellular systems like microbial mats.

Ab initio self organization: Some number of molecules self-organize into a
cell. The result could also be a self-sustaining proto-cell as in some origin-of-life
models.

Regulative development has been studied for over two centuries, and many model systems
are now understood at a substantial level of detail including, in several cases, cell-specific
gene expression profiles (Tintori et al., 2016; Farnsworth, Saunders and Miller, 2020; Wang
et al., 2022). Examples of ab initio self-organization, on the other hand, remain hypothet-
ical. While a variety of models have been proposed, mostly in an origin-of-life context,
none have been fully implemented experimentally and there is little consensus even about
biological plausibility. The goal of any scale-free explanation is to tell exactly the same
kind of story about these two examples. Constructing such an explanation by requiring
examples of ab initio self-organization to be both formal and mechanistic analogs of reg-
ulative development raises a number of issues, mainly concerning the structure and role
of the “environment” in ab initio self-organization, that have been relatively neglected by
previous approaches.

In particular, we will see that treating ab initio self-organization as an analog of regulative
development challenges two deeply-entrenched ideas. First, it questions the near-universal
assumption that any ab initio model must result in a self-replicating system. Evolutionary
models from Darwin onwards have strongly coupled variation with inheritance via either
meiotic or mitotic cell division (Monod, 1972; Szathmáry and Maynard Smith, 1995; Mi-
chod, 1999). Natural selection acts on variants, and hence depends on Darwinian models of
reproduction. Such models suggest ab initio processes that involve self-replicating molecules
immediately. We will suggest that models in which the needed “parts” are generated by
environmental processes that are at most weakly coupled to the systems of interest are
also worth consideration. Variation generated by weakly coupled processes is consistent
with evolution at the global scale, but does not depend on natural selection at any sin-
gle local scale; it thus provides a “Non-Darwinian” source of order. Such weak coupling
is exemplified by situations involving self-organizing systems that include engineered and
manufactured components; we suggest that weak-coupling models may be realistic in other
settings as well.

Second, treating ab initio self-organization as an analog of regulative development challenges
the very idea of self-organization. In its purest form, the idea of self-organization suggests
that the information needed for organization is present in the self. This immediately raises
the essentially unanswerable question of how this critical information got there to begin
with. Directly relating ab initio self-organization to regulative development forces us to
ask, at each step of the process, what systems count as “selves,” how the environment of
each “self” is defined, and how, in each case, the exchange of information between “self”
and environment is implemented (Levin, 2021).

Our analysis suggests two broad conclusions:
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1. Reproduction via cell division is an efficiency hack – a cheap heuristic – which evolu-
tion “froze in” by selecting strong self/other recognition systems starting in bacteria.
Decoupling replication from self-organization generalizes the systems of interest to
developmental studies toward “egalitarian” (Strassmann and Queller, 2010) assem-
blages of unrelated, or in the evolved case, only distantly related, components that
“just happen” to work well together. This allows simpler origin of life stories. It ac-
knowledges the possibility of kinematic replication in biological systems, as observed
experimentally in “xenobots” constructed from dissociated Xenopus laevis skin cells
(Kriegman et al., 2021). It suggests that symbiotic systems such as microbial mats
are “canonical” to at least the same same extent as obligately sexual multicellulars.
The focus of both ab initio and developmental studies becomes, in this case, how
components interact once they are placed in mutual proximity, independently of their
origins.

2. “Self-organization” is always environment-dependent, so we can view it as at least
in part environment-directed: some of the instructive information is initially in the
environment, not in the self that assembles. From the perspective of physical inter-
action (Fields and Marcianò, 2020; Fields, Glazebrook and Marcianò, 2021) or of the
FEP (Friston, 2019; Ramstead et al., 2022; Fields et al., 2022), this is obvious. It is
also obvious in many origin of life models, in microbial mat assembly, and in embryo-
genesis, even in “European plan” organisms like C. elegans (Barrière and Bertrand,
2020). It is, nonetheless, often neglected or de-emphasized, particularly in theoretical
work. As discussed in Fields et al. (2022), the FEP applies to the environment of
any system of interest, rendering it an uncertainty-minimizing agent as discussed in
§4 below. The environment-dependence of self-organization is a consequence of the
environment acting as a Bayesian agent.

In what follows, we first review in §2 both the classical development of the FEP and its
quantum information-theoretic generalization. As the latter provides the most convenient
formalism for describing the system-environment interaction, we adopt it in what follows.
We then discuss in §3 a fundamental symmetry of the FEP that is often neglected: the
FEP requires the environment of any system to also be a VFE-minimizing agent. While
any system-environment interaction is informationally symmetric – equal quantities of in-
formation flow in both directions – what the two parties do with the information they
receive may be radically different. Symmetric information flows, in other words, are con-
sistent with “cognitive light cones” (Levin, 2021, 2022) of different widths and depths, and
hence different active inference capabilities, on the two sides of the system-environment
boundary. We turn in §4 to an explicit comparison between regulative development and
ab initio self-organization, focusing first on characterizing the environments of each ac-
tive component as information sources, and hence as themselves active agents, at each
step in the process. We investigate, in particular, how both regulative development and
ab initio self-organization decrease the VFE detected by the environment, making them
thermodynamically-driven processes under the FEP. The environment of any system, in
other words, can be expected to act so as to increase that system’s complexity, with the
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likely outcome being a complexity-increasing “arms race” between the system and its envi-
ronment if both have sufficient computational resources. We conclude by outlining a “mix
and match” experimental strategy suggested by these results in §5.

2 Classical and quantum formulations of the FEP

2.1 Classical formulations

The FEP applies to physical systems – what Friston (2019) calls “things” or “particles”
– that are persistent, in the sense of having a well-defined state space, over some time
period of interest. Adopting the notation of Friston (2019), if the internal states µ of
such a system S are conditionally independent of the states η of its environment E, it (by
definition) possesses an MB, defined as the set b of states on which the dependence of µ on
η is conditioned. This MB condition will hold, in general, provided the interaction between
system and environment is significantly weaker than the internal self-interactions of either.
Three remarks are in order here. First, the environment E is the entire environment of S,
or at least the entire environment of interest; in what follows, we will always consider E
to comprise “everything but S.” Second, fixing the sets of states µ and η uniquely fixes
the set b and hence the MB. Every system, therefore, has a unique MB separating it from
its environment. Third, the definition of an MB makes no explicit reference to ordinary,
three-dimensional (3d) space. Therefore, while it is commonplace to consider the MB of
an organism, for example, to coincide with or be implemented by its 3d spatial boundary,
this is not a requirement of the theory. Indeed, nothing in principle prevents a collection
of spatially-disconnected entities, e.g. a population of organisms, from having an MB.

Given the conditions above, the VFE is a statistical relations between internal, external,
and intervening blanket states. It can be written Friston (2019), Eq. 2.3:

F (π) = Eq(η)[ln qµ(η)− ln p(η, b)]︸ ︷︷ ︸
Variational free energy

= Eq[− ln p(b|η)− ln p(η)]︸ ︷︷ ︸
Energy constraint (likelihood & prior)

−Eq[− ln qµ(η)]︸ ︷︷ ︸
Entropy

= DKL[qµ(η)|p(η)]︸ ︷︷ ︸
Complexity

−Eq[ln p(b|η)]︸ ︷︷ ︸
Accuracy

= DKL[qµ(η)||p(η|b)]︸ ︷︷ ︸
Divergence

− ln p(b)︸ ︷︷ ︸
Log evidence

≥ − ln p(b)

(1)

where π(t) = (µ(t), b(t)) is the time-dependent “particle” state. The VFE functional F (π) is
an upper bound on surprisal (a.k.a. self-information) I(π) = − logP (π) = − ln p(b) because
the Kullback-Leibler divergence term (DKL) is always non-negative. This KL divergence
is between the probability density over external states η, given the MB state b, and a
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variational density qµ(η) over external states parameterized by the internal state µ. Note
here that the blanket states b are considered components of the “particle” state π; hence
the VFE defined by Eq. (1) is the VFE “for” or “experienced by” S. We could, however,
also consider a composite state ρ = (η, b) and write an analog of Eq. (1) in which the roles
of µ and η are exchanged; the resulting F (ρ) would be the VFE “for” or “experienced by”
E. This symmetry of the FEP will be explored further in §3 below.

If the joint system S t E, where t denotes disjoint union, is represented as a random
dynamical system, then S having an MB requires that state trajectories that start in µ
remain in µ; the states of S cannot, in other words, diverge to outside of the boundary
of S. This condition is met if S has some non-equilibrium steady state (NESS) density.
If we view the internal state µ as encoding a posterior probability distribution over the
external state η, then minimizing VFE is, effectively, minimizing a prediction error under a
generative model (GM) encoded by the NESS density. In this interpretation, Eq. (1) may
be viewed as defining a “Bayesian mechanics” (Ramstead et al., 2022) and minimization
of VFE is a form of inference, termed “active inference” because one way of minimizing
VFE is to act on the environment to move it toward an expected state. In this case, an
agent S is competent if and only if it is an effective minimizer of its experienced VFE, i.e.
if it can prevent its VFE from becoming high enough to drive its states far from its NESS,
destroying the integrity of its MB(Friston, 2019).

While a substantial literature now supports the applicability of the FEP to living systems
(see e.g. Friston et al. (2020), Smith, Babcock and Friston (2020) for topical reviews), the
assumptions of static NESS densities and MBs have also been criticized as unrealistic for
living systems (e.g. Raja et al. (2021); Aguilera et al. (2021); Bruineberg et al. (2022); Di
Paolo, Thompson and Beer (2022); see also Biehl, Pollock and Kanai (2021) for a critique of
ancillary assumptions related to these). Central to several of these critiques is an emphasis
on the history-dependence of living systems and the neglect of history, i.e. encoded memory,
in specifying system states under the FEP. In part as a response to these criticisms, the
FEP has been reformulated as a least-action principle on paths or trajectories in the joint
S t E state space (Friston et al., 2022), an extension that permits a re-interpretation in
terms of classical gauge fields (Sakthivadivel, 2022a,b); see Ramstead et al. (2022) for a
summary of these developments. These formulations do not require assuming a NESS or
a fixed MB; see Sakthivadivel (2022c), in particular, for a discussion of material exchange
between a system and its environment.

We have taken an alternative, but as shown in Fields et al. (2022), fully-consistent approach
to generalizing the FEP, reformulating it as a quantum information-theoretic principle.
This formulation applies to all physcal systems that are not entangled with, and hence
can be distinguished from, their environments. It explicitly addresses the questions of how
organisms identify specific objects within their environments, and how they write to and
read from their memories of specific events.
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2.2 Quantum information-theoretic formulation

As Deutsch (1997) points out, information theory is inherently quantum: it is about answers
to yes/no questions (Wheeler, 1989). The idea that quantum theory is fundamentally about
observation can be traced back to Bohr (1928); see also Bohr (1958). Fuchs (2003) proposed
that quantum theory is fundamentally about observation followed by Bayesian inference;
this view has since been productively developed by the “QBist” movement (Fuchs, 2010;
Fuchs and Schack, 2013; Mermin, 2018). Quantum information theory represents the joint
system S tE by a Hilbert space, which for simplicity we assume to be finite and denote U
for “universe” of interest. As we take E to contain everything (of interest) other than S,
we can choose it to be large enough that the joint system U can be considered isolated, or
closed. The basis vectors of any Hilbert space represent the possible values of the degrees
of freedom of the relevant system; hence the basis vectors of U represent all possible values
of all degrees of freedom of either S or E. As a measurement of each degree of freedom
either yields, or does yield, any particular value at any particular time, we can treat these
basis vectors as binary without loss of generality; hence we can represent U = ⊗Mi=1qi, where
the dimension M = dim(U) is the number of basis vectors of U , the qi are quantum bits
(qubits), i.e. Hilbert spaces of dimension one, and ⊗ is the Hilbert-space tensor product.
We can represent the time-evolution of the state of U , in an abstract, parametric time t,
as:

PU = e−(ı/~)HU t (2)

where HU is the Hamiltonian (total energy) operator on U and ~ is Planck’s constant; see
Nielsen and Chuang (2000) (or any other textbook) for a standard introduction to this
formalism.

The Hamiltonian operator is additive; hence for any decomposition of U into subsystems S
and E, we can write HU = HS + HE + HSE, where HS and HE and the internal or “self”
interactions of S and E, respectively, and HSE represents the interaction between S and
E. We now introduce the single assumption that underlies the FEP:

Separability: We assume that the joint state |U〉 (employing the Dirac no-
tation for states) factors, during the time period of interest, as |U〉 = |SE〉 =
|S〉|E〉.

If multiple observations are involved, we require that the density ρU = ρSE = ρSρE. The
joint state, or state density, is separable, i.e. factors, if and only if (indeed, by definition)
it is not entangled, i.e. the entanglement entropy S(SE) across the S-E boundary, which
we denote by B, is zero. This condition guarantees that the states of S and E can be
independently specified, i.e. they are conditionally independent.

The interaction HSE is defined at the boundary B. Given separability between S and E,
we can, without loss of generality, write HSE as:

HSE = βkkB Tk

N∑
i

αkiM
k
i , (3)
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where the index k = S or E, kB denotes Boltzmann’s constant, T is temperature, the Mk
i

are N mutually-orthogonal Hermitian operators with eigenvalues in {−1, 1}, the αki ∈ [0, 1]
are such that

∑N
i α

k
i = 1, and βk ≥ ln 2 is an inverse measure of k’s thermodynamic

efficiency that depends on the internal dynamics Hk; see Fields and Marcianò (2020);
Fields, Glazebrook and Marcianò (2021); Addazi et al. (2021); Fields, Glazebrook and
Marcianò (2022a); Fields et al. (2022) for further motivation and details of this construction
and Fields, Glazebrook and Marcianò (2022b) for a pedagogical review. Explicit time (t)
dependence can be introduced by making the αki time-dependent, i.e. functions αki (t). This
interaction HSE(t) can, again without loss of generality, be visualized as shown in Fig. 1;
a fully-general control-theoretic model of HSE(t) is provided in Fields et al. (2023). For
each of k = S or E, the operators Mk

i each act on one of N qubits to either measure, or
dually (Pegg Barnett and Jeffers, 2002) prepare, its state. These qubits can be regarded
as constituting a Hilbert space ⊗Ni=1qi that characterizes B; note that this Hilbert space is
ancillary to U , i.e. B is not a physical component of either S or E. The results of all N
measurements by system k is an N -bit encoding of the current measured eigenvalue, for k,
of HSE, i.e. the current value of energy transferred to k by the interaction; the results of
all N preparations by system k is an N -bit encoding of the current prepared eigenvalue,
for k, of HSE, i.e. the current value of energy transferred from k by the interaction. These
statements imply an elapsed, system-relative time interval dtk between measurement and
preparation; where the time tk is the fundamental time unit for system k (Fields, Glazebrook
and Marcianò, 2021; Fields et al., 2022; Fields, Glazebrook and Marcianò, 2022b).
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Figure 1: The action of HSE given by Eq. (3) can be realized by the alternating mea-
surement and preparation actions of each of the Mk

i on a qubit qi. Qubits are depicted as
Bloch spheres (Nielsen and Chuang, 2000). There is no requirement that S and E share
preparation and measurement bases, i.e. local definitions of the z axis for each qubit. The
qubits together form a communication channel C that is implemented by the boundary B
separating S from E. Adapted from Fields and Marcianò (2020) Fig. 1, CC-BY license.

Under the conditions above, the boundary B is a holographic screen separating S from
E: it encodes precisely the information that S can obtain about E and vice-versa. As
such, it performs the functions of an MB. Hence any two physical systems which have a
separable joint state, i.e. an interaction that can be represented by Eq. (3), are separated
by an MB. Note that this characterization of B, like the definition of an MB given in §2.1
above, makes no reference to 3d space; indeed it is completely topological. Note moreover
that both the boundary B and the interaction Eq. (3) are completely invariant under
further decompositions of either S or E. This follows solely from the additivity of HU ,
or alternatively, the associativity of the tensor product. The internal interaction HE, for
example, can be re-written as HE =

∑
iHEi

+
∑

ij HEiEj
without altering the equation

HU = HS + HE + HSE or the definition of B in any way. We will see in §3.3 below that
S’s identification of, and interaction with, specific “objects” or “systems” embedded in E
is completely independent of any assumptions about the decomposition of E. We will then
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consider in §4.2 how using multiple boundaries that enclose multiple hierarchical “levels”
of a system of interest allows us to track system growth and development.

We are now in a position to state the FEP for generic quantum systems. As all that S can
observe about E are the states of the qi on B as E has prepared them, S’s uncertainty
about E (i.e. S’s VFE) is solely uncertainty about the (next) states of the qi. This
uncertainty is reduced to zero if S’s measurements of the qi yield the same values that
it, S, prepared; this will occur as MS

i → ME
i for all i. If MS

i = ME
i for some i, the

entanglement entropy S(SE) becomes non-zero; in the limit at which MS
i = ME

i for all
i, S and E become fully entangled (Fields, Glazebrook and Marcianò, 2021; Fields et al.,
2022; Fields, Glazebrook and Marcianò, 2023). The limit at which VFE is minimized to
zero is, therefore, the limit in which separability between S and E is fully lost. When
formulated for generic systems, therefore, the FEP is the classical limit of the Principle
of Unitarity, which requires the time evolution of closed systems to preserve information,
and hence to asymptotically approach pure, fully-entangled states. Note that this latter
principle applies to U , which by comprising “everything” of interest is, by definition, a
closed system as noted earlier; its components S and E, which interact with each other, are
open. The FEP applies, therefore, to all systems to which quantum theory applies, i.e. to
all physical systems, provided only that they are separable from their environments. In this
case, what is of interest is not that some system behaves in accord with the FEP, but rather
how it does so. As Ramstead et al. (2022) emphasize, what can be tested experimentally
are the proposed answers to such how questions. The remainder of this paper discusses
in detail how a system can behave in accord with the FEP, in the specific case of living
systems undergoing regulative development.

3 Informational symmetry is consistent with cognitive

asymmetry

3.1 Physical interactions are informationally symmetric

As discussed in connection with Eq. (1), and as clear from the S-E exchange symmetry of
Eq. (3) or Fig. 1, the FEP applies equally to any system and its environment (see also the
discussion of this point in Fields et al. (2022)). The interaction HSE as defined by Eq. (3),
and its implementation on the inter-system boundary B are, in particular, informationally
symmetric. Each “cycle” of interaction between S and E consists, in the representation
of Fig. 1, in the encoding by E of an N -bit “message” on the qubits qi, followed by the
measurement, by S, of the qi to produce an N -bit outcome, followed by preparation of the qi
by S and measurement of the qi by E (Fields and Marcianò, 2020). This process effectively
transfers N classical bits from E to S and then back to E. Whether the values of these
bits are faithfully transferred between S and E – whether S will measure a value ‘+1’ if E
prepares a value ‘+1’ – depends on whether S and E employ the same local reference frame
– in this case, the same local z axis – for preparation and measurement. In general, they will
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not; “free choice” of reference frame is a requirement of separability (Fields, Glazebrook and
Marcianò (2022b); see also Conway and Kochen (2009) for a general discussion of free choice
in this context). As we will see in §3.3 below, the local reference frames employed by systems
to prepare and measure the qubits comprising their boundaries largely determine how they
are able to interact with their environments, and hence how their behavior complies with the
FEP. Before discussing this, however, it is necessary to understand the most fundamental
aspect of system-environment interaction, thermodynamic exchange.

Information and thermodynamic energy are interconvertable by Landauer’s principle (Lan-
dauer, 1961; 1999; Bennett, 1982), which sets a lower bound of ln2kBT per bit on thermody-
namically irreversible processes, e.g. bit erasure. Direct information-to-energy conversion
in accord with this limit has been demonstrated experimentally (Toyabe et al. 2010; Bérut
et al, 2012; see Parrondo, Horowitz and Sagawa, 2015 for review). Any physical interaction
that irreversibly transfers information, therefore, must be accompanied by a transfer of
thermodynamic energy. Processing information to obtain an answer that has an effect on
subsequent behavior, i.e. irreversible classical computation (Horsman et al., 2014), has a
finite free energy cost, again given by Landauer’s principle. Hence any system that uses
information from its environment to alter its behavior – including, clearly, any living sys-
tem – must devote some of the information/energy obtained from its environment to the
free-energy cost of classical computation. The amount of energy obtained from the envi-
ronment thus provides a strict upper bound on the amount of classical computation (in bits
per unit time) a system can perform (Fields and Levin, 2021). We can, therefore, repre-
sent any system-environment interaction as a bidirectional exchange of information across
a boundary B in which some of the information exchanged is devoted, by each party, to the
free-energy requirements of classical computation as illustrated in Fig. 2. Photosynthetic
systems provide a straightforward example: some fraction of the photons received by such
systems is allocated to electron transfer processes that provide free energy (e.g. ATP) to
molecular pathways that process information from the environment and drive actions on
the environment. The bits allocated to supplying the free-energy requirements of classical
computation – e.g. those specifying photons of useable frequency in photosynthetic systems
– are “uninformative” in that their specific values (i.e. +1 or -1) are irrelevant to their per-
bit energetic value (at least ln2kBT ); hence they collectively constitute an “uninformative
sector” of B, the extent of which depends on the thermodynamic efficiency of the system
employing them (see Fields et al. (2022) for further discussion). The remaining bits, if any,
collectively constitute the “informative sector” of B; only these bits can provide inputs
to, or encode outputs from, nontrivial computational processes. As the definitions of these
sectors depend on efficiency (βk in Eq. (3)), they will in general differ between S and E.
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Figure 2: a) A system S interacts with its environment E; the Hamiltonian operator
HSE representing the interaction is defined at the boundary B that functions as an MB
statistically separating S from E. The environment E comprises everything that is not the
system S. b) When the boundary B is viewed from S’s perspective, in can be divided into
incoming (red) and outgoing (blue) bits. Some of these bits (gray shading) must be allocated
to the thermodynamic functions of free-energy input and waste-heat dissipation; these bits
are uninformative, i.e. unavailable for computational processing. The remaining bits are
available as computational inputs (sensations) and outputs (actions). The situation is the
same from E’s perspective, though the allocation of bits to informative and uninformative
sectors may be different. Adapted from Kuchling, Fields and Levin (2022), CC-BY license.

The informational symmetry of physical interactions has an important, but often neglected,
consequence in the context of the FEP: the environment E of any system S must itself be
considered an agent. As discussed in connection with Eq. (1), E’s VFE quantifies its un-
certainty about S’s behavior. The FEP requires that E engages in active inference, i.e.
that it acts on its environment – the system of interest S – so as to minimize the VFE
that it, E, measures at its MB. In the formulation employed here, the MB of each system
is just the (state space) boundary B between them; hence the FEP requires that any pair
of interacting systems behave in such a way that they both minimize the VFE that they
measured at their mutual boundary. In the limit in which the S-E interaction is purely
thermodynamic, i.e. neither S nor E engages in any classical computation, both mini-
mize measured VFE by approaching thermodynamic equilibrium. If either S or E engages
in classical computation, VFE-minimizing solutions are in general not at thermodynamic
equilibrium (Fields, Glazebrook and Marcianò, 2021); to the extent that S and E can be
approximated by classical random dynamical systems, these solutions are NESS solutions
for both S and E (see Friston (2019); Ramstead et al. (2022) for extensive details). Such
solutions respect the 2nd Law from the perspectives of both component systems: S and
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E each absorb free energy from and exhaust waste heat into their interaction partner, i.e.
E and S respectively. Hence each system “sees” the entropy of its interaction partner
increase. The (classical) entropy of the total system SE is its total information content,
which is strictly conserved and hence can be rescaled to zero (cf. Tegmark, 2012 for a
discussion of entropy in this bipartite-decomposition setting). This rescaling of the total
entropy has no effect on the local entropies measured by either S or E.

3.2 Informational symmetry is consistent with thermodynamic
asymmetry

Let us now assume that S is capable of nontrivial information processing. In this case,
S implements some nontrivial function f : s → a, where s is the instantaneous state of
its informative (unshaded in Fig. 2) input sector and a is the instantaneous state of its
informative output sector. If S is considered as a random dynamical system, the FEP
requires this function to be, on average, either a gradient descent or an (internal) solenoidal
flow on the statistical manifold that defines S’s measured VFE as a function of E’s state
(Friston, 2019; Ramstead et al., 2022). In the current formulation, the function f is a (in
general quantum) computation implemented by the internal interaction HS and must, on
average, be VFE non-increasing for S.

The internal dynamics HS must respect the thermodynamic asymmetry, for S, between the
informative (s, a) sector of B and the uninformative, thermodynamic sector. The internal
dynamics HE of E, however, are by construction conditionally independent of HS. Hence
if E also implements nontrivial information processing, there is no requirement, and indeed
no expectation, that the boundary between informative and uninformative sectors for E
aligns with that assigned by HS. Nor is there any requirement or expectation that S and
E have the same, or even similar, efficiencies of free energy usage or waste heat dissipation.
What one interaction partner treats as an informative signal, either incoming or outgoing,
can be treated by the other as uninformative “noise,” i.e. as waste heat output or free
energy input. Meaningful communication across B requires, first and foremost, overcoming
this thermodynamic asymmetry. As we will see, morphology – effectively, the addition of
geometric degrees of freedom to B – provides one way of doing this.

3.3 State measurements are reference-frame dependent

To understand what S can measure, and hence what S can “know” about E, it is useful
to reflect on how we make measurements, as scientists in laboratories. Consider measuring
lengths with a meter stick that has 1 mm resolution. The meter stick physically encodes a
length standard – the meter – and also physically encodes, by means of permanent, unmov-
able tick marks, the possible outcome lengths that it can measure, each separated from the
others by half of the measurement resolution. The length standard – the meter – encoded
by the meter stick is arbitrary, but by encoding it, the meter stick allows measurements of
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different objects at different times to be compared. The comparison process depends on two
assumptions: 1) that the length of the meter stick, and hence what “1 meter” means, does
not change, and 2) that the number and positions of the tick marks, traditionally called
“pointer positions,” do not change. Physically encoding these two assumptions makes the
meter stick a reference frame (RF); it is useful as a reference to which other lengths may be
meaningfully compared. An RF is simultaneously a physical object and a semantic object:
it assigns to a measurement not just an outcome value, but also a meaning.

Human observers make ubiquitous use of reference frames, including meter sticks, clocks,
and all forms of laboratory equipment, but also such non-artifacts as the diurnal cycle
and the Earth’s gravitational and magnetic fields. Any object that is associated, via some
process of calibration, with a standard can serve as an RF. Making use of an external RF,
however, always requires observation, and these observations must be mutually comparable
to be physically meaningful. Hence employing an external RF for a degree of freedom such
as length or time requires encoding an internal RF, including an internal standard, for that
degree of freedom. Internal “standards” are fixed default values, expectation values, or set
points – in dynamical systems language, NESS solutions or attractors. All internal processes
that have such set points can be considered internal RFs. Humans and other organisms
encode internal spatial, temporal, vibrational, chemical, and electromagnetic RFs, with
RFs for the cell cycle, membrane voltage, and various chemical concentrations being some
of the most ancient (see Fields and Levin (2020c); Fields, Glazebrook and Levin (2021)
for explicit examples). Internal RFs solve the “problem of meaning” (Froese and Taguchi,
2019) for organisms: they render an organism’s measurements mutually comparable, and
hence consistently actionable. To the extent that they contribute to homeo/allostasis, they
are essential for survival, as indeed recognized by the classical formulation of the FEP
(Friston, 2019).

In the language employed here, any internal RFs of a system S are implemented by HS. As
HS cannot be determined given only the interaction HSE with some E, internal RFs cannot,
in principle, be fully characterizable by external observations. This is, in fact, well-known
independently of the current considerations: all RFs are physical systems that must, at
least at microscopic scales, be considered quantum systems. They are, therefore, quantum
RFs (QRFs; Aharonov and Kaufherr (1984), Bartlett, Rudolph and Spekkens (2007)) that
encode “nonfungible” information, that is, information that cannot be fully specified by
any finite string of classical bits (Bartlett, Rudolph and Spekkens, 2007). It is somewhat
ironic that this notion of non-fungibility was discovered by quantum theorists, as classical
physics assumes that physical systems are characterized by real numbers, which are not in
general representable as finite bit strings. Nonfungibility has the consequence that QRFs
cannot be shared by sharing bit strings, i.e. by classical communication, but only by being
transferred as unique physical systems (Bartlett, Rudolph and Spekkens, 2007; Fields and
Marcianò, 2019). Internal QRFs are, therefore, not sharable in principle. Indeed in the
limit in which two distinct systems approach implementing identical internal QRFs, they
become entangled and lose their identities as distinct systems; this is precisely the limit
MS

i = ME
i for all i at which the time evolution under the FEP becomes unitary (Fields
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et al., 2022; Fields, Glazebrook and Marcianò, 2023). Hence while any QRF can be given
a classical description based on finite-resolution observations, e.g. by a DNA sequence, a
pathway diagram, or a parameterized differential equation, such maps can never completely
characterize the (nonfungible) territory.

The information encoded by living systems is, in practice, nonfungible in a very clear sense –
it typically cannot be obtained, even at low resolution, without destructive measurements
that breach the system’s MB and thus interfere with the internal dynamics, and hence
with the very internal information that is of interest. At the cellular level, set points that
define reference values are encoded in memory structures spanning the scales from that
of DNA sequences, to intracellular concentration gradients, to cytoskeletal and membrane
organization. Measures such as DNA sequencing, RNA profiling, and most biochemistry are
irreversibly disruptive and obtain only snapshots of the cellular state. The processes that
implement cellular QRFs typically involve multiple components, are often tightly coupled to
other processes, e.g. by common second messengers such as Ca2+, and may require quantum
coherence as a resource to achieve thermodynamic feasibility (Fields and Levin, 2021); hence
no measurements can be guaranteed to be free of side effects. The “measurement effect”
that besets not only cell biology, but all of the life sciences, is thus not merely an analog
of a quantum principle, but rather direct evidence of the non-fungible nature of biological
systems.

The language of QRFs – nonfungible processes coupled to nonfungible standards – allows
us to distinguish three types of measurements that a system S could, in principle, make.
The first is to implement a QRF Q that acts on the entire input component Binf (in) of
the informative sector Binf of its boundary, as shown in Fig. 3a. The action of Q yields
an encoding q of the instantaneous state of Binf (in). As the number of bits encoded on B,
or on any sector of B, is proportional to its area, the free energy cost of implementing Q
on Binf can be written as:

EQ = Ainf (in)βQkBT (4)

where Ainf (in) is the area of Binf (in), βQ ≥ ln2 is a factor measuring the energetic efficiency
of Q, kB is Boltzmann’s constant and T is temperature (Fields, Glazebrook and Marcianò,
2021).
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Figure 3: a) A system S implements a QRF Q that acts on the entire input component
Binf (in) of the informative sector Binf of its boundary, yielding an encoding q of the state
of Binf (in). b) S implements QRFs Q1 and Q2 that act only on sectors Q1 and Q2 of
Binf (in), yielding encodings q1 and q2 of the states of those sectors. c) S implements
QRFs P (“pointer”) and R (“reference”) that act on sectors P and R of Binf (in), yielding
encodings p and r of the states of those sectors, subject to the restriction that r remains
fixed. Diagrams of similar form can be drawn using classical descriptions of the QRFs;
standard intracellular signalling pathway diagrams, for example, have the form of Fig. 3b
or c.

Assuming fixed efficiency β = βQ, S can save free energy by measuring only particular sec-
tors of Binf (in), as shown in Fig. 3b. The state information obtained is, in this case, limited
to the sector states q1 and q2; this limitation reflects the inevitable trade-off between energy
expenditure and information gain. From a computational perspective, however, S can now
measure, using further specialized QRFs, the correlation < q1, q2 > and the conditional
dependencies (q1|q2) and (q2|q1). These further computations enable basic logic functions
(AND, OR, NOT) and, given a memory for prior probabilities, Bayesian inference (Fields
and Glazebrook, 2022). Hence sector measurements enable context-dependent, explicitly
hierarchical computation. A general model of the control-flow process required to deploy
distinct QRFs in a context-dependent way is provided in Fields et al. (2023).

A specialized form of sector measurement is shown in Fig. 3c. Here the sector R is required
to maintain a fixed state r; hence measured states of the sector P have the form p = (p|r).
The disjoint union P t R, in this case, functions as an external RF with fixed reference
component R and pointer component P ; the “state of interest” of PR is its “pointer”
state p. All perceivable objects, or in the language of Friston (2019), all time-persistent
things, detectable by S have this composite form: the invariant reference sector R allows
identification of the object as “the same thing” that was measured earlier, while the variable
pointer sector P displays the state of interest. Again items of laboratory apparatus provide
a canonical example since they must be distinguished from their surroundings by measuring
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such observables as size, shape, color, and position before the informative “pointer” readouts
can be determined.

3.4 Hierarchical measurements are ubiquitous at all scales

Turning now to biology, it is clear that measurements of the forms shown in Fig. 3b and 3c
are ubiquitous, while measurements of the form shown in Fig. 3a can occur only in the limit
of no post-measurement classical processing. Measuring the entire detectable state of the
environment at every instant leaves no space on B to support thermodynamic exchange;
organisms instead focus their resources on what is salient and significant, deploying different
sector-specific QRFs at different times. Allocating resources to the salient and significant
is the function of attention systems (see e.g. Burgoyne and Engle (2020) for a recent review
and Fields, Glazebrook and Levin (2021) for discussion in the current context).

While both object perception and comparative measurements are familiar in animals with
large brains, they are less well characterized in smaller-brained or aneural animals, plants,
and unicellulars. All organisms capable of identifying and behaving in state-specific ways
toward mates or conspecifics, however, are capable of some level of object identification,
and hence of Fig. 3c measurements. This capability extends, therefore, into the microbial
world. All organisms capable of conditioning their behavior on the values of two variables
simultaneously, e.g. on sugar and salt concentration, or on ambient light and the availabil-
ity of water, are capable of Fig. 3b measurements. This capability extends, therefore, even
deeper into the microbial world, and to our knowledge characterizes all of life. The same
considerations apply at intracellular scales. Enzymes that require cofactors or phosphory-
lation as well as a substrate are performing Fig. 3b measurements on their environments,
as are membrane-bound channels, pumps, and receptors that are sensitive to both local
membrane voltage and binding of GTP or other regulatory molecules. RNA polymerases
that bind DNA and then scan for specific transcription-initiation sites (Kuehner and Brow,
2006) are performing Fig. 3c measurements on their environments: first identifying a DNA
molecule as an object, and then detecting a particular state – a particular base-sequence
motif – of that object. Spatially-organized intracellular pathways are increasingly recog-
nized as performing complex, multi-input computations, both in neurons (Gidon et al.,
2020) and in non-neural cells (Kramer, del Castillo and Pelkmans, 2022), as long argued
by the basal cognition movement on the basis of both biochemical and behavioral data
(Maturana and Varela, 1980; Pattee, 1982; Stewart, 1996; di Primio, Müller and Lengeler,
2000; Lyon, 2015; Baluška and Levin, 2016; Baluška and Reber, 2019; Levin, 2019; Lyon,
2020).

3.5 Hierarchies of QRFs are MCAs

We have, in the above, focused on measurements, i.e. on processing the bits encoded on
the incoming side of the informative sector Binf (in) of the S-E boundary. Actions on
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E can, however, be viewed as “preparations” of the bits encoded on the outgoing side of
the informative sector Binf (out). Preparing or setting a bit value is dual, as a process,
to measuring its value (Pegg, Barnett and Jeffers, 2002). These processes are, therefore,
informationally symmetric; indeed any QRF can be viewed as preparing, as well as mea-
suring, the values of some degree(s) of freedom. A meter stick, for example, can be used to
mark 30 cm lengths as well as to measure them. This informational symmetry is manifest
when QRFs are represented as category-theoretic structures – formally, limits and colimits
– of networks of bidirectional operators on single strings of bits, a representation that is
provably completely general (Fields, Glazebrook and Marcianò, 2022a).

If all QRFs are informationally symmetric, the mapping f : s → a implemented by the
internal dynamics HS must be informationally symmetric. The informational symmetry of
HSE then requires that the thermodynamic functions of free energy acquisition and waste
heat dissipation must be informationally symmetric. The dynamics HS can, therefore, be
divided into two informationally symmetric flows, one of which transfers free energy to and
dissipates waste heat from the other. We can, therefore, redraw Fig. 2b as Fig. 4. The
analogy with information and free energy flows in chemical reactions is obvious.

Figure 4: The mapping f : s → a implemented by S’s QRFs is supported by an
informationally-symmetric thermodynamic flow from the uninformative (thermodynamic)
sector Bth(in) to the corresponding output sector Bth(out).

The mapping f : s → a is, at each instant, implemented by some hierarchy of QRFs
on both input and output sides; we have previously showed, as an example, how cortical
neurons implement QRF hierarchies (Fields, Glazebrook and Levin, 2022). Which QRFs are
deployed at any instant determines a measurement context (Fields and Glazebrook, 2022;
Fields et al., 2022); switching between contexts is a metaprocessing function which, as a
component of f : s→ a, must itself be implemented by a (fixed) QRF hierarchy (Kuchling,
Fields and Levin, 2022). Each QRF in the hierarchy is a self-contained computational
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system with its own inputs, outputs, power supply, and semantics. The QRF hierarchy is,
therefore, a canonical MCA.

4 Biological self-organization is thermodynamically driven

4.1 The “environment” is an active agent

It is well known that simple physical systems can self-organize complex structures when
subjected to mechanical and thermodynamic forcing; thunderstorms provide the most fa-
miliar example. Turing (1953) introduced such processes to the study of morphogenesis; see
Kondo and Miura (2010); Morelli et al. (2012) for reviews. In practice, such mechanisms
are generally conceptualized as occurring inside the system of interest, e.g. inside a cell, or
inside a developing organism. By considering the “environment” to be outside of the sys-
tem undergoing pattern formation, the role of the environment as a thermodynamic agent
is minimized. This renders such pattern formation models prima facie consistent with the
neo-Darwinian, genome-focused approach to morphogenesis (e.g. Monod, 1972; Dawkins,
1984; Michod, 1999) with its idea that “[d]evelopmental biology can be seen as the study of
how information in the genome is translated into adult structure, and evolutionary biology
of how the information came to be there in the first place” (Szathmáry and Maynard Smith,
1995, p. 231).

By focussing attention on processes occurring at system-environment boundaries, the FEP
framework allows us to examine the role of the “environment” of a process not at some
pre-determined scale, but at the scale of the actual dynamics of interest. As emphasized
by Friston (2019), all physical systems that persist through time can be understood as self-
organizing from the perspective of the FEP. We are now in a position to use the conceptual
tools provided by the FEP to understand self-organization both within a given scale and,
more interestingly, as a thermodynamically-driven process that generates complexity at
progressively larger scales. This will allow us to connect origin-of-life models to evolutionary
and developmental models within a single formal framework, and to understand how the
transition from protocellular to cellular and then multicellular systems is driven by the
FEP.

The FEP has already been shown to provide a generic model of within-scale self-organization
for systems with fixed MBs (Kirchhoff et al., 2018; Friston, 2019). To briefly summarize,
VFE minimization corresponds to maintaining a state close to the NESS. This is achieved
when internal processes – i.e. the internal dynamics HS – predict the environment’s ac-
tions on the MB sufficiently accurately to maintain the integrity of the MB and hence the
conditional independence of internal states. This is referred to as “self-evidencing” (Fris-
ton, 2019) and corresponds, in biological systems, to the maintenance of homeo/allostasis
(Friston, 2013). To place this in the current language, the internal dynamics HS, and in
particular, the QRF hierarchy that it implements, can in this case be regarded as a GM of
the behavior of E, specifically, of the action of E on the MB.
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We have also shown previously how producing “copies” of itself that cluster in the local
environment is a viable strategy for a system to reduce VFE (Fields and Levin, 2019). The
copies shield the system from the open environment, reducing its unpredictability. The
behavior of the copies is similar to the behavior of the system, thus increasing predictability.
While this model was formulated for biological cells and shows how multicellularity can be
advantageous from the perspective of the FEP, it applies at larger scales as well, with
ethnic, linguistic, or religious communities and social-media “echo chambers” as obvious
examples.

Here we take a different, but complementary perspective. The “environment” surrounding
an open system is typically treated as passive: as a thermodynamic or material-exchange
resource, an ambient field, or simply a heat bath. In the FEP literature, the environment
is often just a source of uncertainty. For biological systems, this is clearly unrealistic: the
environment of any organism is itself an evolved structure that includes products manufac-
tured by other organisms, e.g. oxygen, soil, and more recently, human artifacts. When all
of life is considered one developing system, “the environment” becomes that system’s stig-
mergic memory (Fields and Levin, 2020b). At the scale of a single organism, the immediate
environment consists largely of other organisms, both conspecifics and others. Similarly,
the environment of a biomolecule consists largely of other biomolecules, the environment
of a population consists largely of other populations, etc. These “others” are active agents
pursuing their own agendas, as made explicit in game-theoretic models.

The FEP not only allows, but when viewed in full generality, requires this game-theoretic
perspective. The FEP applies to all systems with MBs, and describes all such systems as
VFE-minimizing agents. The environment of any system shares an MB with that system,
as made explicit in Fig. 2a. The environment E of any system S is, therefore, a VFE-
minimizing agent. The sole source of VFE for E is S; any generative model implemented by
E is, therefore, a generative model of S’s actions on its MB. To assume that E’s generative
model is random – that E functions only as a heat bath or noise source – is thus to assume
a very special case, one that is largely irrelevant to biology. The FEP thus extends and
generalizes an insight of Lovelock and Margulis (1974), Maturana and Varela (1980), Rosen
(1986), and many others: realistic environments are active agents, just as more typical
systems of interest are. The capabilities of the environment as an agent depend only on its
dynamics HE and hence are completely independent of decomposition as noted in §2.2; in
particular, they are independent of its description by the system of interest using its QRFs,
i.e. in terms of the objects perceived by the system.

4.2 The environment acts so as to increase the system’s pre-
dictability

When we consider E to be an active agent, the goal of its actions becomes clear: E acts
to decrease its measured VFE; hence it acts to increase the predictability, by its generative
model, of S’s behavior. In particular, E acts to increase the predictability of S’s actions
on its MB. Note that from E’s perspective, S’s behavior becoming increasingly predictable
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corresponds to S transferring less novel information to E and hence “losing freedom.” The
rate of increase of S’s entropy, relative to E, thus decreases, though it remains positive since
S still absorbs all waste heat generated by E, as discussed in §3.1 above. The considerations
of the previous section apply equally to S and to E; to understand E’s actions on S, we
must consider E’s information-processing capabilities, i.e. its hierarchy of QRFs. It is, in
particular, important to understand whether E processes S’s actions on B as informative
inputs and vice versa (Fields et al., 2022).

A model in which S inserts “copies” of itself into E (Fields and Levin, 2019) is effectively
a model in which E deploys QRFs that “make sense” of S’s actions, as illustrated in Fig.
5a – 5c. From S’s perspective, the copies are components of E – or more precisely, the
behaviors of the copies are components of the behavior of E, as measured by S at its MB
– that are at least partially predictable and hence “make sense” to S. As the number of
copies increases from zero (Fig. 5a) to one (Fig. 5b) to many (Fig. 5c), the behavior
of E as a whole becomes progressively more predictable by S. Hence it is advantageous,
from an FEP perspective, for S to insert copies of itself into E (Fields and Levin, 2019).
The same, however, is true for E: as E gains copies of S and hence incorporates their
QRFs, the behavior of S becomes more predictable for E. As noted earlier, this symmetric
dynamic becomes obvious when we consider the QRFs that implement human language
understanding or other sociocultural practices. A company E, for example, can predict the
behavior of its customer S much better if it includes employees C that speak S’s language.
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Figure 5: a) A system S interacts with its environment E as in Fig. 2a. b) S inserts
a “copy” C of itself into E. The copy brings new QRFs to E, increasing E’s predictive
power. c) S inserts multiple copies of itself into E, as in the model of Fields and Levin
(2019). d) A boundary B′ can be drawn anywhere in E. Provided the states inside and
outside B′ are mutually conditionally independent (i.e. B′ functions as an MB), drawing
this new boundary defines new systems S ′ (inside B′ and containing S) and E ′ (outside
B′, the remainder of E). e) S adds a copy C of itself to S ′. f) S adds multiple copies of
itself to S ′.

We have thus far considered the interaction HSE and the boundary B between S and
E. We are, however, free to pick any boundary in the joint system SE that we like,
provided only that it functions as an MB in rendering the states of the two systems that it
separates mutually conditionally independent. Let us suppose, therefore, that the boundary
B′ shown in Fig. 5d meets this condition. Drawing this boundary defines a system S ′ –
which includes S – that is inside B′, and an environment E ′ that is outside B′. The two
interact, at B′, via an interaction HS′E′ . All of the previous considerations apply to this
new interaction. We can now consider the consequences of S inserting copies of itself into
S ′, i.e. into the interior defined by the boundary B′, as shown in Fig. 5e and 5f. Doing
this has the consequences for S’s predictive capability discussed above. Here, however, we
will be interested in its consequences for the predictive capabilities of S ′ and E ′.

When the boundary is moved from B to B′, some degrees of freedom of E become degrees of
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freedom of S ′; hence E ′ has fewer degree of freedom thanE, and therefore less computational
power than E. Any QRFs of E that directly measured bits encoded on B, in particular,
are lost in the transition from E to E ′. However, because B′ by construction functions as
an MB, the states of S ′ are conditionally independent of the states of E ′. In this case, E
factors as E = E ′ · (S ′ \S), where ‘\’ denotes set, or more properly state-space subtraction.
Any QRFs implemented by S ′ \ S that measure states of B, therefore, can be viewed as
writing their outcome values on B′. We can, therefore, view B′ as a coarse-graining of
B. Indeed, this construction implements the idea of “MBs within MBs” (Kirchhoff et al.,
2018).

This construction underscores an important point, one relevant to some criticisms of the
applicability of the FEP to biological systems. When a cell, for example, divides, it does not
lose its MB. Its environment, however, changes; hence its interaction with its environment
changes. The joint system comprising the cell and its daughter can also be regarded as
a “system of interest” with its own MB, one that is substantially larger that the MB of
the original cell. With sufficient divisions, the MB of the developing multicellular system
may wholly contain the MB of the original cell, together with many other MBs surrounding
pairs, triples, or other collections of component cells. Each of these MBs defines a different
system, a different environment, and a different system-environment interaction. The MB
of one’s liver, for example, supports a very different interaction than the MB of one’s
brain. Understanding a whole organism’s interaction with its environment – as defined
at the whole organism’s MB – requires also understanding the interactions defined at all
of the MBs within the organism: behavioral biology requires physiology. This is not a
reductionist view: understanding the interactions between the parts and their environments
is a necessary, but not a sufficient, condition for understanding the interaction of the whole
with its environment. It is rather an integrative, systems-biology view: the hierarchy of
MBs within the organism specifies the loci of the internal interactions that both enable
the whole organism’s interaction with its environment and enable that interaction to be
understood.

A particular example of the above construction is familiar, and has been studied in detail.
Suppose S is a system of interest, E ′ is an observer, e.g. a human observer, and S ′ \S is an
ambient field, e.g. the ambient visible-frequency photon field. In this case, the QRFs imple-
mented by S ′ \S that measure B are light-scattering interactions that encode properties of
S, e.g. size or shape. The scattered light impacts E ′ at the boundary B′, transferring the
encoded information about S to E ′. The resolution of the encoding is decreased by a factor
proportional to the ratio of the areas of B and B′; the transfer process thus implements
a coarse-graining. Clearly, this coarse-graining information-transfer process is simply the
standard classical-optics mechanism of visual perception. Such environment-mediated mea-
surement has been studied in general under the rubric of “quantum Darwinism” (Zurek,
2003; 2009). It depends critically on boundaries that impose conditional independence at
both B and B′.

Given this conditional independence condition, we can write HE = HE′ + HS′\S, where
HS′\S implements QRFs transferring information between B and B′ and HE′ implements
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QRFs outside B′. The condition that allows drawing B′ is separability: B′ must function
as an MB that renders E ′ conditionally independent of S ′. The interaction between E ′ and
S ′ must, therefore, be effectively classical; any QRFs of E that cross the new interaction
boundary B′ must include a classical interface – effectively, an application-programming
interface (API) – at B′ that prevents sharing quantum coherence across B′. Under these
conditions, drawing the boundary B′ has no effect on HE and hence no effect on E’s QRF
hierarchy. The component E ′ therefore “knows” exactly the same things about S in Fig.
5a and Fig. 5d; Fig. 5d simply makes the boundary B′ explicit. The same equality must,
in this case, hold between what E ′ knows about S in Fig. 5b and 5e, and in Fig. 5c and
5f. What is going on inside B′ does not change the E ′-S ′ interaction in any of these pairs
of situations.

What, then, is the effect of the copies C filling up S ′\S from the point of view of E ′? What
is the difference, for E ′, between Fig. 5d and 5f, or between Fig. 5a and 5c? The copies C
add their own QRFs to S ′ \ S. These QRFs transfer information about S to E ′, and also
transfer information about E ′ to S as discussed in Fields and Levin (2019). The area, and
hence the coding capacity, of B′ does not change as these additional QRFs are inserted
into S ′ \ S. The boundary B′ must, therefore, encode a convolution, which for simplicity
we can take to simply be an average of the outcomes written by the QRFs contributed by
the multiple copies C. These outcomes are likely to be similar, since the C are all copies
of S, but in general they will not be identical. Hence in general, B′ implements a further
coarse-graining of information about S in Fig. 5f compared to 5d, or between Fig. 5a and
5c. Transfer of information through an ambient medium again provides a familiar example
of this coarse-graining effect. Listening to a radio, or a conversation, in a quiet room can
be a low-noise, high-resolution experience. Adding multiple, inexact copies of the radio, or
of the conversation, inevitably increases noise and decreases fidelity.

While coarse-graining increases noise, it also decreases uncertainty if the resolution of mea-
surements is also decreased. This is achieved by deploying QRFs that measure relatively
low-resolution “macrostates” in place of high-resolution microstates (Hoel, Albantakis and
Tononi, 2013; Hoel, 2017). From the perspective of E ′, therefore, filling up S ′ \ S with
copies C of S decreases VFE, and therefore increases predictive power, provided E ′’s QRFs
are lower-resolution than E’s QRFs. This is the case whenever E’s QRFs are hierarchies
that cross B′: in this case, E ′’s components of the hierarchy automatically coarse-grain
E’s complete QRF. Neurons are structured so as to take advantage of such coarse graining
(Fields, Glazebrook and Levin, 2022). Coarse-graining and hierarchical structure further
increase predictive power if the copies C are diverse, as the coarse-graining imposed by B′

will “wash out” the details written by the C more if they are writing more diverse outcomes.
Hence we have a rather surprising conclusion:

The FEP will drive the peripheral environment E ′ around any system S to act
on S so as to enable or facilitate the insertion of diversified “copies” of S into
S’s immediate environment.

The FEP, in other words, drives the environment around any “interesting” system to enable
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both the replication of that system and the self-organization of the replicates into a “body”
surrounding the system. Self-organization is, therefore, environmentally-driven under the
FEP.

4.3 Environmental driving facilitates both the origin of life and
its diversification

The surprising conclusion above becomes unsurprising when we consider it in the case of
either animal or plant reproduction: germ cells are intentionally enclosed in microenviron-
ments – seeds, eggs, a uterus – that facilitate their replication and the self-organization
of an embryo. The “correct” microenvironment is generally essential to the success of the
self-organization process.

The same is obviously true in bioengineering and artificial life contexts; here the “environ-
ment” in the form of the human experimenter provides both the materials and the microen-
vironment required for self-organization. Here as in all curiosity-driven experimentation,
the goal of the experimenter-as-environment is to increase future predictive power, i.e. to
decrease future VFE. Both the rate and extent of the decrease depend on the complexity of
the engineered system, particularly on the complexity of its QRFs. Machine learning (ML)
systems, for example, are designed to generate their own QRFs that encode their accumu-
lated experience. Systems such as AlphaFold (Jumper et al., 2021) and AlphaCode (Li et
al., 2022) exhibit surprising (and surprisingly useful) behavior; this potential for surprise
generates the “explanation problem” – a problem of how to reduce experimentally-elevated
VFE – in AI (Arrieta et al., 2020; Samek et al., 2021). Future hybrid and chimeric sys-
tems that incorporate biological “parts” are expected to generate even more challenging
explanation problems (Levin, 2022).

Bioengineering and artificial life contexts highlight the environment’s ability to “take over”
the task of replication, providing the copies C that are needed and sometimes actually in-
serting them into the immediate microenvironment of the system. In the case of kinematic
replication of xenobots, for example, the environment provides the needed supply of dissoci-
ated X. laevis skin cells (Kriegman et al., 2021). The environment also provides the “parts”
in naturally-occurring cases of affiliative aggregation, from Dictyostelium sporulation or the
formation of multispecies microbial mats to the replication of symbiotic systems, including
all holobionts (Guerrero, Margulis and Berlanga, 2013; Gilbert, 2014a; Bordenstein and
Theis, 2015). As humans are holobionts, our own reproduction is environmentally assisted;
while the core microbiota is transferred from the mother at birth (Gilbert, 2014b; Coscia
et al., 2021), further components are added by the environment – including the nursing
mother – after birth, and indeed throughout the lifespan.

Viewed more broadly, the environment provides the parts in every case of biological or
biochemical replication, in the form of molecular subunits to be assembled by an essen-
tially kinematic process. Replication of DNA – the fundamental “replicator” in the gene-
centric neo-Darwinist view of both evolution and development (Dawkins, 1984) – is an
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environmentally-driven process: the environment provides the nucleic acids, the enzymes,
the free energy, and the biochemically and thermodynamically stabilized compartment re-
quired for the kinematic process. Why? From an FEP perspective, the environment does
these things to increase future predictability. Making more of the same kind of molecule
generates a more predictable future state than making a random assortment of molecules.

The environment similarly provides both parts and a stabilized microenvironment in origin-
of-life models (Cornish-Bowden and Cárdenas, 2017; Bartlett and Wong, 2020). The FEP
suggests that it does this for the same reason that it does this in the case of DNA replication
or organismal reproduction: to increase its future predictive power. Living systems localize,
organize, and coarse-grain information. From the point of view of the environment, this
compartmentalization reduces VFE.

As discussed in Friston (2019) and Fields et al. (2022), the classical limit of increasing
predictive power is generalized synchrony between system and environment: each predicts
the other’s future actions perfectly. Achieving this limit, clearly, requires evenly-matched
computational power, and hence both behavioral and computational capabilities, on each
side of the system-environment boundary. “Small” organisms – e.g. microbes – compensate
in part for their relatively limited computational power by limiting the sizes, and thus the
informational bandwidths, of their MBs. If most environmental variation is invisible, the
task of predicting what is visible becomes easier. Humans represent an opposite extreme,
as we continually expand the informational bandwidths of our MBs by developing new
observational technologies. This activity – science – increases our VFE and hence the
predictive demands placed on our cognitive systems. Rendering the environment more
predictable does not, however, render it less complex; it rather requires that our predictive
models – our GMs – become more complex. A limiting scenario of generalized system-
environment synchrony can involve arbitrarily large (but of course finite) complexity on
both the system and the environment side. Human evolution itself is a microcosm of this
process: the increasing complexity of primate, and then human, social interactions are
widely acknowledged to have co-evolved as an “arms race” with the increasing complexity
of primate, and then human, cognition, including such cognitive complexities as language
use, extensive environmental manipulation, and culture (Adolphs, 2003; Dunbar, 2003;
Dunbar and Shultz, 2007; Adolphs, 2009). Predicting the outcomes of such arms races
would require detailed models of both the perception/action capabilities (i.e. the QRFs)
and the computational capabilities of both the components and their shared environment.
This is particularly true in cases in which the multiple components of a complex system,
e.g., a population or an ecosystem, may have conflicting goals.

5 Conclusion

We have seen here how the FEP provides a generic model of MCAs that applies equally to
natural and engineered systems and equally to short and long timescales. Indeed the FEP
erases the distinction between natural and engineered systems. Because the FEP charac-
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terizes the environment of any system of interest as an agent, the environment can always
be regarded as “training” or “engineering” the system. The ubiquitous role of the envi-
ronment in providing the parts required for replication, whether of DNA molecules, cells,
evolved or constructed organisms, or completely artificial, abiotic systems, demonstrates
this engineering aspect. When the environment is seen as an engineer, it becomes clear
that “self-organization” is always environment-assisted self-organization. The product of
any such process, the FEP tells us, serves to decrease the environment’s measured VFE,
and hence in an important sense serves the environment’s goals.

This view of the environment and its interactions with living systems significantly broadens
the usual concept of what is “normal” or “typical” in biology. Xenobots and chimeras
become exemplars, not oddities. It also becomes clear that the environment encodes “target
morphology” in the form of VFE reduction criteria all the way down. In both evolution and
development, and in origin of life scenarios, the environment assembles a bunch of likely
parts to see what happens. Life is a successful outcome of an experiment performed by the
environment.

Why would an environment assemble parts to create a living system, and then assist in its
replication? The FEP suggests a simple answer: the environment is an agent that creates
novelty in order to see what information it can get in return. The environment is a typical
active inference agent. It behaves like any such agent behaves, limited only by the free
energy it can obtain and the computational resources it can bring to bear.

This way of thinking suggests an experimental strategy that has been pursued, but never
systematically: it suggests dissociating embryos or other collections of cells, of various dif-
ferent kinds, mixing them together in diverse, “multicultural” populations, and seeing how
they behave in various environments. Can we make xenobot-like systems, for example, that
are multi-origin chimeras? Can we make de novo symbiotic complexes, analogous to lichens,
that have parts from very different lineages? Experiments along these lines would, in effect,
be a kind of “recombinant biology”, analogous to standard genetic engineering, but carried
out with cells, not genes. The success of recombinant genetics suggests that recombinant
biology may work for cells in some “right” kinds of environments. The outcomes of such
experiments could substantially increase the diversity of life beyond that supplied thus far
by evolution.
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